Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's disease as a case of brake failure?

26.06.2008
A loss of protein function in neurons may lead to dementia

Rutgers researcher Karl Herrup and colleagues at Case Western Reserve University have discovered that a protein that suppresses cell division in brain cells effectively "puts the brakes" on the dementia that comes with Alzheimer's disease (AD). When the brakes fail, dementia results.

This discovery could open the door to new ways of treating Alzheimer's disease, which affects up to half the population over the age of 85.

Determining the protein’s previously unsuspected role in AD is an important piece of the puzzle and it brings a new perspective to the basis of AD. “It changes the logic from a search for a trigger that kicks off the dementia to the failure of a safety that has suppressed it,” said Herrup, chair of the Department of Cell Biology and Neuroscience at Rutgers, The State University of New Jersey.

... more about:
»Alzheimer' »Cdk5 »Herrup »dementia

The researchers reported their findings in the in the June 24 Proceedings of the National Academy of Sciences (PNAS). The paper was previously available online in the PNAS Early Edition.

Herrup has spent a good part of his career seeking to unravel the mystery behind unrestrained cell cycling. Looking at AD through the lens of cancer, Herrup sees the rampant cell division associated with cancer mirrored in AD-related dementia.

In cancer, the seemingly uncontrollable cell division enables the disease to overwhelm normal body cells. Adult neurons, or nerve cells, don't normally divide. (Cancerous brain tumors do not grow from neurons but from glial cells.) Instead of producing new neurons in the brain, the cycling leads to cell death, which causes progressive dementia.

"Every cell wants to divide, and that basic urge never leaves the cell," Herrup said.

"Homeostasis in the brain has worked out a way to successfully suppress cell cycling, but with age even that highly successful program sometimes fails, resulting in a catastrophic loss of neurons."

Herrup's team experimented with a protein family known as cyclin-dependent kinases (Cdk). These enzymes power the cell cycle, driving it forward through its various phases. The scientists focused on one particular kinase – Cdk5 – termed "an atypical kinase" because they could find no involvement in propelling the cell cycle. They found that while it appears to be inert as a cell cycle promoter, Cdk5 in the nervous system actually functions to hold the cell cycle in check.

"Its mere presence helps protect the brain," Herrup said. "What we discovered is that Cdk5 acts as a brake, not a driver."

Their latest laboratory research examined the workings of Cdk5 in human AD tissues and in a mouse model. Normally, the protein resides in the nerve cell nucleus, but in the presence of AD – both in the mouse model and in the human tissue – the disease process drives the protein out into the cell's cytoplasm. This disrupts the status quo, overrides the brake and unleashes a chain of events that ultimately leads to the death of the cells and the resulting dementia.

"The ejection of Cdk5 out of the nucleus is probably related to the changed chemistry of the Alzheimer's brain and chronic inflammation that accompanies AD," Herrup said.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Alzheimer' Cdk5 Herrup dementia

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>