Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our genome changes over lifetime

26.06.2008
May explain many 'late-onset' diseases

Researchers at Johns Hopkins have found that epigenetic marks on DNA-chemical marks other than the DNA sequence-do indeed change over a person's lifetime, and that the degree of change is similar among family members.

Reporting in the June 25 issue of the Journal of the American Medical Association, the team suggests that overall genome health is heritable and that epigenetic changes occurring over one's lifetime may explain why disease susceptibility increases with age.

"We're beginning to see that epigenetics stands at the center of modern medicine because epigenetic changes, unlike DNA sequence which is the same in every cell, can occur as a result of dietary and other environmental exposure," says Andrew P. Feinberg, M.D., M.P.H, a professor of molecular biology and genetics and director of the Epigenetics Center at the Johns Hopkins School of Medicine. "Epigenetics might very well play a role in diseases like diabetes, autism and cancer."

... more about:
»DNA »epigenetic »methylation

If epigenetics does contribute to such diseases through interaction with environment or aging, says Feinberg, a person's epigenetic marks would change over time. So his team embarked on an international collaboration to see if that was true. They focused on methylation-one particular type of epigenetic mark, where chemical methyl groups are attached to DNA.

"Inappropriate methylation levels can contribute to disease-too much might turn necessary genes off, too little might turn genes on at the wrong time or in the wrong cell," says Vilmundur Gudnason, MD, PhD, professor of cardiovascular genetics at the University of Iceland director of the Icelandic Heart Association's Heart Preventive Clinic and Research Institute. "Methylation levels can vary subtly from one person to the next, so the best way to get a handle on significant changes is to study the same individuals over time."

The researchers used DNA samples collected from people involved in the AGES Reykjavik Study (formerly the Reykjavik Heart Study). Within the study, about 600 people provided DNA samples in 1991, and again between 2002 and 2005. Of these, the research team measured the total amount of DNA methylation in each of 111 samples and compared total methylation from DNA collected in 2002 to 2005 to that person's DNA collected in 1991.

They found that in almost one-third of individuals, methylation changed over that 11-year span, but not all in the same direction. Some individuals gained total methylation in their DNA, while others lost. "What we saw was a detectable change over time, which showed us proof of the principle that an individual's epigenetics does change with age," says M. Daniele Fallin, Ph.D., an associate professor of epidemiology at the Johns Hopkins Bloomberg School of Public Health. "What we still didn't know was why or how, but we thought 'maybe this, too, is something that's heritable' and could explain why certain families are more susceptible to certain diseases."

The team then measured total methylation changes in a different set of DNA samples collected from Utah residents of northern and western European descent. These DNA samples were collected over a 16-year span from 126 individuals from two- and three-generation families.

Similar to the Icelandic population, the Utah family members also showed varied methylation changes over time. But they found that family members tended to have the same kind of change-if one individual lost methylation over time, they saw similar loss in other family members.

"We still haven't concretely figured out what this means for health and disease, but as an epidemiologist, I think this is very interesting, since epigenetic changes could be an important link between environment, aging and genetic risk for disease," Fallin says.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinsmedicine.org/ibbs/research/epigenetics/
http://jama.ama-assn.org/

Further reports about: DNA epigenetic methylation

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>