Proteins can reduce the toxic content in rice

Arsenic is a very toxic and carcinogenic element which occurs naturally in rock. Arsenic contaminates water, soil and crops in a large number of countries. In some developing countries, high levels of arsenic in springs used for drinking water and irrigation have lead to alarmingly high amounts of toxin both in water and cultivated crops.

For example, in Bangladesh, parts of India and in some regions of Nepal, where rice is a staple food and people therefore risk consuming large amounts of the toxin via the food chain, arsenic is a very serious problem. According to calculations by UNESCO, more than 20 million people may be exposed to chronic arsenic exposure in these areas alone. But arsenic is a global problem where both developing and industrialised countries are affected.

Found the protein which governs arsenic absorption
Markus Tamas, a researcher at the Institute for Cell and Molecular Biology at the University of Gothenburg, together with Danish colleagues, has found the proteins responsible for arsenic absorption in plants. The discovery, which has been published in the scientific journal BMC Biology, opens up the possibility of reducing or preventing the absorption of arsenic by plants by using gene technology.
This could lead to varieties of rice being bred where the rice does not absorb arsenic even if it is irrigated with poisoned water.
“Using gene technology, we can either deactivate the proteins, or manipulate them so that the plants secrete the arsenic absorbed. By limiting the absorption and storage of arsenic in the rice, we should at least partly be able to reduce arsenic poisoning in humans by reducing how much of it comes from the food chain,” says Markus Tamas, senior lecturer in Microbiology.

Attempts to develop rice varieties which absorb less arsenic are underway already, but this discovery of the particular proteins involved may lead to these developments accelerating.

“But even though we are happy to have identified the proteins, our goal is still a long way off,” says Markus Tamas.

Contact:
Markus Tamas, Senior Lecturer, Institute for Cell and Molecular Biology, University of Gothenburg
031-786 2548
073-373 2548
markus.tamas@cmb.gu.se

Media Contact

Krister Svahn idw

More Information:

http://www.vr.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors