Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins can reduce the toxic content in rice

18.06.2008
Researchers at the University of Gothenburg have found the proteins which govern how plants absorb arsenic. With this discovery, a variety of rice can be developed which does not absorb the toxin, even if it is irrigated with untreated water.

Arsenic is a very toxic and carcinogenic element which occurs naturally in rock. Arsenic contaminates water, soil and crops in a large number of countries. In some developing countries, high levels of arsenic in springs used for drinking water and irrigation have lead to alarmingly high amounts of toxin both in water and cultivated crops.

For example, in Bangladesh, parts of India and in some regions of Nepal, where rice is a staple food and people therefore risk consuming large amounts of the toxin via the food chain, arsenic is a very serious problem. According to calculations by UNESCO, more than 20 million people may be exposed to chronic arsenic exposure in these areas alone. But arsenic is a global problem where both developing and industrialised countries are affected.

Found the protein which governs arsenic absorption
Markus Tamas, a researcher at the Institute for Cell and Molecular Biology at the University of Gothenburg, together with Danish colleagues, has found the proteins responsible for arsenic absorption in plants. The discovery, which has been published in the scientific journal BMC Biology, opens up the possibility of reducing or preventing the absorption of arsenic by plants by using gene technology.
This could lead to varieties of rice being bred where the rice does not absorb arsenic even if it is irrigated with poisoned water.
"Using gene technology, we can either deactivate the proteins, or manipulate them so that the plants secrete the arsenic absorbed. By limiting the absorption and storage of arsenic in the rice, we should at least partly be able to reduce arsenic poisoning in humans by reducing how much of it comes from the food chain," says Markus Tamas, senior lecturer in Microbiology.
... more about:
»Protein »arsenic

Attempts to develop rice varieties which absorb less arsenic are underway already, but this discovery of the particular proteins involved may lead to these developments accelerating.

"But even though we are happy to have identified the proteins, our goal is still a long way off," says Markus Tamas.

Contact:
Markus Tamas, Senior Lecturer, Institute for Cell and Molecular Biology, University of Gothenburg
031-786 2548
073-373 2548
markus.tamas@cmb.gu.se

Krister Svahn | idw
Further information:
http://www.vr.se

Further reports about: Protein arsenic

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>