Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into cellular reprogramming revealed by genomic analysis

30.05.2008
Research collaboration of Harvard, Whitehead Institute, and Broad Institute uncovers critical molecular events underlying reprogramming of differentiated cells to a stem cell state

The ability to drive somatic, or fully differentiated, human cells back to a pluripotent or “stem cell” state would overcome many of the significant scientific and social challenges to the use of embryo-derived stem cells and help realize the promise of regenerative medicine.

Recent research with mouse and human cells has demonstrated that such a transformation (“reprogramming”) is possible, although the current process is inefficient and, when it does work, poorly understood. But now, thanks to the application of powerful new integrative genomic tools, a cross-disciplinary research team from Harvard University, Whitehead Institute, and the Broad Institute of MIT and Harvard has uncovered significant new information about the molecular changes that underlie the direct reprogramming process. Their findings are published online in the journal Nature.

“We used a genomic approach to identify key obstacles to the reprogramming process and to understand why most cells fail to reprogram,” said Alexander Meissner, assistant professor at Harvard University’s Department of Stem Cell and Regenerative Biology and associate member of the Broad Institute, who led the multi-institutional effort. “Currently, reprogramming requires infecting somatic cells with engineered viruses. This approach may be unsuitable for generating stem cells that can be used in regenerative medicine. Our work provides critical insights that might ultimately lead to a more refined approach.”

... more about:
»Reprogramming »Stem »genomic »partially »reprogrammed

Previous work had demonstrated that four transcription factors — proteins that mediate whether their target genes are turned on or off — could drive fully differentiated cells, such as skin or blood cells, into a stem cell-like state, known as induced pluripotent stem (iPS) cells. Building off of this knowledge, the researchers examined both successfully and unsuccessfully reprogrammed cells to better understand the complex process.

“Interestingly, the response of most cells appears to be activation of normal ‘fail safe’ mechanisms”, said Tarjei Mikkelsen, a graduate student at the Broad Institute and first author of the Nature paper. ”Improving the low efficiency of the reprogramming process will require circumventing these mechanisms without disabling them permanently.”

The researchers used next-generation sequencing technologies to generate genome-wide maps of epigenetic modifications — which control how DNA is packaged and accessed within cells — and integrated this approach with gene expression profiling to monitor how cells change during the reprogramming process. Their key findings include:

Fully reprogrammed cells, or iPS cells, demonstrate gene expression and epigenetic modifications that are strikingly similar, although not necessarily identical, to embryonic stem cells.

Cells that escape their initial fail-safe mechanisms can still become ‘stuck’ in partially reprogrammed states.

By identifying characteristic differences in the epigenetic maps and expression profiles of these partially reprogrammed cells, the researchers designed treatments using chemicals or RNA interference (RNAi) that were sufficient to drive them to a fully reprogrammed state.

One of these treatments, involving the chemotherapeutic 5-azacytidine, could improve the overall efficiency of the reprogramming process by several hundred percent.

“A key advance facilitating this work was the isolation of partially reprogrammed cells,” said co-author Jacob Hanna, a postdoctoral fellow at the Whitehead Institute, who recently led two other independent reprogramming studies. “We expect that further characterization of partially programmed cells, along with the discovery and use of other small molecules, will make cellular reprogramming even more efficient and eventually safe for use in regenerative medicine.”

Nicole Davis | EurekAlert!
Further information:
http://www.broad.mit.edu
http://www.harvard.edu
http://www.wi.mit.edu

Further reports about: Reprogramming Stem genomic partially reprogrammed

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>