Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decision making at the cellular level

26.06.2002


It’s a wonder cells make it through the day with the barrage of cues and messages they receive and transmit to direct the most basic and necessary functions of life. Such cell communication, or signal transduction, was at least thought to be an "automatic" cascade of biochemical events.



Now, however, a study reported in a recent issue of Nature by Johns Hopkins and Harvard scientists has found that even before a message makes it through the outer cell membrane to the inner nucleus, the cell is busy activating a molecular switch to guide how the message will be delivered in the first place.

"Our results add a layer of complexity to understanding how messages are communicated by cells," says Mark Donowitz, M.D., professor of medicine at Hopkins and a co-author of the study in the June 20 issue. "But by the same token, the new layer offers an exciting new aspect of cellular circuitry that could lead to potential therapies for many serious disorders," he says.


"This extra step in cell signaling actually lets the cell figure out how it’s going to communicate what it needs to," says Donowitz. "Without this switchboard system, the cell would go crazy and overload because every stimulus that passed by would be forwarded to its interior."

The two most common cellular signals are calcium and cyclic adenosine monophosphate, or cAMP. They are sometimes known as "second messengers" because they intercept messages from receptors on the cell surface and relay them to proteins within the cell, altering their shape and thus their behavior and that of the cell at large.

Donowitz and colleagues showed that a cell decides which signal to use, calcium or cAMP, by the presence or absence of a specific protein called sodium/hydrogen exchanger regulatory factor 2, or NHERF2. Specifically, their experiments tested how the receptor for parathyroid hormone, and for parathyroid hormone-related protein (also a hormone), on the cell surface signals the interior of the cell to perform specific functions.

They found that the signal includes more than just the receptor and the proteins that latch onto it, but requires an additional class of proteins (of which NHERF2 is a member) called PDZ proteins that determine whether to send the signal via calcium or through cAMP. If NHERF2 is present along with the parathyroid hormone receptor, then the signal is sent via calcium. If there is no NHERF2, then cAMP is responsible for delivering the message.

The cell’s decision to use calcium or cAMP is important because each generates different responses from its target proteins, says Donowitz. For example, a signal relayed by cAMP might induce a kidney cell to release water or a bone cell to break down into its constituent minerals. Likewise, signals relayed by calcium could lead to the aggregation of blood platelets, which cause clots, or to the release of histamine, a major component of the allergic response.

"These results show that at the very earliest stage of cell signaling, called receptor binding, there is a switch that determines what kind of signal will be used," says Donowitz. "To understand cell signaling, you really have to know the whole system."

The receptor for parathyroid hormone, for example, is crucial for signaling and proper functioning of the parathyroid glands, intestinal cells and kidney cells. Parathyroid hormone and parathyroid hormone-related protein are vital to the normal functioning of the body. Disruptions in the regulation or amount of these substances can lead to serious ailments, including kidney stones, convulsions, decalcification of bones or "rubber bones," and can interfere with the normal growth of bones and cartilage. Common diseases that are caused in part by faulty signaling in cells include cancer, diabetes and disorders of the immune system.


Other authors of the study are C. Chris Yun of Hopkins, Matthew J. Mahon (lead author) and Gino V. Segre (senior author), both of Massachusetts General Hospital and Harvard Medical School.

M.J. Mahon, et al. Nature (2002) Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Vol. 417:858-861.

Trent Stockton | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/graduateprograms/cmm/donowitz.html

More articles from Life Sciences:

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

nachricht Scientists propose new theory on Alzheimer's, amyloid connection
23.04.2019 | Florida Atlantic University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Simple and Fast Method for Radiolabelling Antibodies against Breast Cancer

23.04.2019 | Life Sciences

Quantum gas turns supersolid

23.04.2019 | Physics and Astronomy

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>