Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mesothelin engineered on virus-like particles provides treatment clues for pancreatic cancer

18.02.2008
New understanding of a protein that spurs the growth of pancreatic cancer could lead to a new vaccine against the deadly disease, said researchers at Baylor College of Medicine in Houston in a report appearing in the current edition of the journal Molecular Cancer Therapeutics.

The protein called mesothelin appears to play an important role in promoting pancreatic cancer growth, said the senior author Dr. Qizhi (Cathy) Yao, professor of surgery – vascular surgery at BCM. She, along with co-lead authors Dr. Min Li, assistant professor of surgery, and research associate Dr. Uddalak Bharadwaj carried out the studies of the protein that is found on the tumor cells’ surface.

“Mesothelin is found in other cancers for several years,” said Yao, also a researcher in the Dan L. Duncan Cancer Center at BCM. “However, we didn’t know the role it played in pancreatic cancer:” until she and her colleagues reported in this article. In fact, they found very high levels of mesothelin in 18 of 21 samples of patient’s pancreatic tissues compared to amounts found in nearby normal tissues. In studies of this protein in the lab, pancreatic cancer cell lines that produced high levels of mesothelin grew faster and spread more than those in which mesothelin levels were lower.

Pancreatic cancer cells grew and spread faster in mice whose tumors expressed high levels of mesothelin than in those whose cancer did not, said the researchers, who conducted the studies in an immune deficient mouse.

... more about:
»Protein »Researcher »Yao »mesothelin »pancreatic »particles

“We saw this molecule as very significant in the life of the tumor cells,” Yao said. “Our next step is to identify whether this would be a good active immunotherapy target.”

Making a treatment vaccine of virus-like particles (VLPs) that contained mesothelin, researchers injected mice having pancreatic cancer with this vaccine three times. Virus-like particles have the unique property of inducing protective immune responses but they lack the infectious capacities of the original virus.

Tumor growth in the immunized mice slowed and in some cases the tumor disappeared. The average life span for the mice not treated was four weeks. The immunized mice survived five weeks longer than those not treated.

Researchers found that the immunization works by suppressing production of key immune system cells that suppress the body’s ability to fight the tumor. The researchers said pancreatic cancers produce these cells, called T regulatory cells, as a protective measure.

“If we are able to see the same results in humans, this would allow us to incorporate a combination therapy to treat the tumor,” Yao said. “Treatment with a single drug is not effective.”

Yao and her colleagues are seeking U.S. Food and Drug Administration approval to begin studies using their vaccination on people suffering from pancreatic cancer.

Graciela Gutierrez | EurekAlert!
Further information:
http://mct.aacrjournals.org/
http://www.bcm.edu

Further reports about: Protein Researcher Yao mesothelin pancreatic particles

More articles from Life Sciences:

nachricht Antibiotics: New substances break bacterial resistance
12.11.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht How the Zika virus can spread
11.11.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>