Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein complex found to regulate first step in human blood clotting

03.06.2002


Brown scientists have described a previously unknown but critical blood-clotting role for Arp2/3, a complex of seven proteins found in animal and plant cells.



Reporting in the June 15 issue of Blood, the scientists show that Arp2/3 complex is a cellular machine that drives a human blood platelet to change shape into a larger, more flattened form and begin the process of clotting. The link between what happens at the surface of a platelet and the mechanism of shape change within it has mystified scientists for decades. Arp2/3 has been found in yeast and a soil amoeba, as well as platelets.

“A major question for scientists has been how to control platelet shape change,” said the project’s senior researcher, Elaine Bearer, M.D., associate professor of pathology and laboratory medicine. “Understanding these molecular events could lead to better treatments for abnormal clotting.” Roughly 80 percent of strokes are caused by atypical clots that block blood flow.


Bearer and colleagues found that Arp2/3 complex is required for platelets to form the shape-changing filaments that begin the blood clotting process. The process of filament formation is called actin polymerization.

Actin filaments are fine threads composed of multiple subunits – polymers that line up like a sting of pop beads – which give structure to the cell, as well as drive shape changes, cell movements and other cellular processes. These filaments also participate in muscle contractions. The formation of filaments inside dividing cells also separates cytoplasm into the two daughter cells, so that each inherits the right amount of maternal material.

Since the first cell was observed under a microscope more than 200 years ago, scientists have sought to explain cellular shape change. Cell shape is used today for the pathologic diagnosis of tumors such as breast cancer. For 50 years, scientists have known that actin was required for shape change. Until now, they were unable to explain what drove actin to polymerize and form filaments.

Polymerization of actin is an important first step in the process of platelet clot formation. Platelets use these filaments to reach out and grab fibrin, the major matrix material of clots, and other platelets, to form the clots.

When a blood vessel is torn, molecules are released that bind to platelet surface receptors. This creates a cascade of events inside the first platelets that arrive at the wound, which change shape, sending out sticky arms into the blood flow to recruit other platelets that attach in an organized matrix to stop the bleeding and maintain the vessel.

Stroke, which results from abnormal clotting, is treated with blood thinning compounds to block platelets from forming clots. “A problem with this therapy is that it may completely stop platelet activity and a person may bleed to death,” Bearer said. “We would like to find a gentler way to block polymerization without this dangerous side effect.”

Cell biologists guessed that Arp2/3 complex played a role in nucleating new actin filaments because it did so in a test tube. Although many proteins play a similar role in test tubes, none has been found to be required in cells. Bearer and colleagues are the first to demonstrate that Arp2/3 complex plays a central role in nucleating actin filaments inside a cell.

“We think there are about 10 biochemical events between the cell and the polymerization process,” she said. “Each step triggers the next event in a pathway that culminates in polymerization. We’d like to learn how to control this process.”

Actin polymerization occurs in cells across the class of creatures called eukaryota. These include all animals, plants, fungi, algae and protozoa. Eukaryota share fundamental characteristics of cellular organization, biochemistry and molecular biology.

“Showing that the Arp2/3 complex is a major regulator in platelet actin dynamics leads us to believe that it plays this role in all cells, because all cells have shape-changing abilities that are required for many vital cell processes,” Bearer said. “Beyond representing a significant advance in the understanding of molecular events leading to platelet shape change, this work is likely to provide fundamental information about the principles and paradigms governing actin dynamics inside all cells.”

The Brown scientists developed new molecular-insertion technology – a model for testing the internal mechanisms of cells – to help them describe both the role of Arp2/3 as well as where it is located and activated during the stages of filament formation. The technology allowed researchers to “reach inside and tickle” the tiny platelets, without destroying them.

“It made it possible to manipulate the molecular composition of the platelet cytoplasm,” Bearer said. “This allowed us to investigate biochemical relationships between signaling pathways and the shape changes that occur in platelets but are common to all cells. The method provides a new model to test the effect of small molecules on signal pathways and shape changes in other human cells and other cell types.”

Besides Bearer, the research team included Zhi Li, lead author and doctoral student, and undergraduate Eric Kim. Both Li and Kim graduated in May 2002. Funding from the National Institutes of General Medical Sciences of the National Institutes of Health, a Salomon Research Award and the Brown University Undergraduate Teaching and Research Assistantships Program supported the work.

Scott Turner | EurekAlert

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>