Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rong Li Lab reports protein interactions of MAP kinase signaling pathway

17.12.2007
The Stowers Institute’s Rong Li Lab, in collaboration with the Institute’s Imaging Center, has achieved a quantitative in vivo measurement of the dynamic protein-protein interactions in the mitogen-activated protein (MAP) kinase cascade signaling pathway, which is critical to growth and differentiation decisions in all eukaryotic cells.

The paper, “Mapping Dynamic Protein Interactions in the MAP Kinase Signaling Using Live-Cell Fluorescence Fluctuation Spectroscopy and Imaging,” was posted to the Web site of Proceedings of the National Academy of Sciences (PNAS) yesterday and will appear in a future print issue of the journal.

In this work, Brian Slaughter, Ph.D., Postdoctoral Research Fellow; Joel Schwartz, Ph.D., Managing Director of the Imaging Center; and Rong Li, Ph.D., Investigator, used sophisticated biophysical techniques to perform quantitative biochemical measurements directly in live yeast cells.

“It turns out that by using three fluorescence-based analyses we could assess the movement, concentration, and state of protein hetero- and homo-oligomerization at the single cell level,” said Dr. Slaughter. “It is a significant advance to be able to apply these quantitative techniques to the model system of yeast.”

... more about:
»Institute’s »MAP »Rong »quantitative

“These technical breakthroughs represent an exciting emerging direction for molecular analysis in the future,” said Dr. Li. “They will enable biological systems to be understood with precise information regarding when, where, and to what extent molecules interact with each other during important regulatory processes.”

The Rong Li lab worked closely with the Institute’s Imaging Center to perfect the application of these techniques in yeast, calling on the Center’s expertise and cutting-edge instrumentation for microscopy-based technology.

“This work demonstrates the Institute’s tremendous strength for live-cell quantitative analysis,” said Robb Krumlauf, Ph.D., Scientific Director. “I believe this and similar techniques will become increasingly important to our ability to better understand the most fundamental events in the life cycle of a cell.”

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org

Further reports about: Institute’s MAP Rong quantitative

More articles from Life Sciences:

nachricht Discovery of genes involved in the biosynthesis of antidepressant
09.12.2019 | Leibniz Institute of Plant Genetics and Crop Plant Research

nachricht Scientists have spotted new compounds with herbicidal potential from sea fungus
09.12.2019 | Far Eastern Federal University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>