Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regeneration in the digestive tract

08.11.2018

The human gut is teeming with billions of beneficial bacteria. Therapies that use antibiotics often destroy most of them. Whether and how the intestinal flora will subsequently recover has been investigated by a research team that included scientists from the MDC. The results have been published in the scientific journal Nature Microbiology.

The human digestive tract houses a universe of tiny organisms. There are roughly as many bacteria in the gut as there are people living on earth.


This is a colorized scanning electron micrograph of Escherichia coli, grown in culture and adhered to a cover slip.

Credit: NIAID, modified by Sofia Forslund, MDC, CC BY 2.0

Usage Restrictions: Creative Commons Attribution 2.0 Generic license https://creativecommons.org/licenses/by/2.0/

These microorganisms almost always serve the well-being of their host. They help to digest food, produce vitamins, and train the immune system. In addition, their very presence helps stem the spread of pathogens.

But the intestinal microcosm, also known as the microbiome, is sensitive to disruptions. "When thrown out of balance, there is a risk of infection, excess weight, and diabetes, as well as inflammatory and neurological diseases," says Dr. Sofia Forslund, who in May this year switched from the European Molecular Biology Lab (EMBL) in Heidelberg to the Max Delbrück Center for Molecular Medicine (MDC) in Berlin to study the complex interactions between humans and microbiomes.

Antibiotics leave permanent traces in the gut

In a study published recently in Nature Microbiology, Forslund, together with colleagues from Denmark, Germany, and China, investigated how broad-spectrum antibiotic therapy affects the interaction of gut bacteria.

"We were able to show that the microbiome had almost completely recovered six months after drug administration," says the Swedish researcher. But only "almost": "Some sensitive bacterial species disappeared completely," says Forslund.

In the four-day study, the team led by MDC researchers and two scientists from the University of Copenhagen administered a cocktail of three antibiotics (meropenem, gentamicin, and vancomycin) to twelve healthy young men who had agreed to participate. These drugs are mainly used when more common antibiotics no longer work, due to the bacteria already having become resistant to them.

Some types of bacteria survived the drug administration

The researchers then studied their subjects' microbiomes for six months. By means of DNA sequencing - a method used to determine the structure of the genetic material - they determined which bacterial species were present in the men's guts, and which genes were present in the bacteria.

The team also paid particular attention to resistance genes, with which the microbes defend themselves against drugs. "Our study is probably the first to investigate the influence of antibiotics on bacterial gene activity," says Forslund.

It was first shown that the gut had not become completely sterile despite the administration of three potent antibiotics, reports the researcher. Among the remaining bacteria, the team even discovered some previously unknown species that have not yet been characterized. Other microbes shrank and turned into spores - a life form in which bacteria can persist for many years in precarious conditions without losing their original properties.

More and more disease-causing pathogens initially appeared

The subsequent repopulation of the gut was gradual. "Similar to when a forest slowly recovers after a fire," says Forslund. However, according to the researcher, bacteria with disease-causing properties, such as Enterococcus faecalis and Fusobacterium nucleatum, initially appeared more frequently. At the same time, the team was able to identify many virulence factors in the microorganisms - structures and metabolites that are more harmful to humans. "This observation explains why most antibiotics cause gastrointestinal disturbances," says Forslund.

Over time, however, the intestinal flora normalized again. Bad microbes were increasingly replaced by good bacteria such as the lactic acid-producing bifidobacteria that are instrumental in keeping pathogens away. After six months, the subjects' microbiome was nearly the same as before. However, more than a few of the earlier bacterial varieties were missing.

"As expected, the number of resistance genes in the bacteria also increased," reports Forslund. Surprisingly, it was not the case that the bacterial species that reappeared most rapidly after antibiotic administration also had the most resistance genes. "This genetic material seems more likely to play a long-term role in gut repopulation," says the researcher.

The lung microbiome will also be investigated further

"Given the apparently permanent loss of individual species and the increased number of resistance genes, the study shows once again how important it is to administer antibiotics with care," Forslund emphasizes, adding: "It must also be further explored how to increase future success rates in protecting the sensitive microbiome from damage caused by antibiotics."

The scientist plans to contribute to this research. For example, the MDC is currently running an observational study through which Forslund wants to find out how longer-term antibiotic treatments affect gut biodiversity - and whether a greater depletion of species increases the risk of obesity and metabolic diseases. She would also like to investigate how often gut bacteria exchange their resistance genes during antibiotic administration. A study investigating the influence of these drugs on the lung microbiome is already in the planning stage.

###

Albert Palleja et al. (2018): "Recovery of gut microbiota of healthy adults following antibiotic exposure." Nature Microbiology 3. doi:10.1038/s41564-018-0257-9 (Publication available upon request.)

The Max Delbrück Center for Molecular Medicine (MDC)

The Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) was founded in Berlin in 1992. It is named for the German-American physicist Max Delbrück, who was awarded the 1969 Nobel Prize in Physiology and Medicine. The MDC's mission is to study molecular mechanisms in order to understand the origins of disease and thus be able to diagnose, prevent, and fight it better and more effectively. In these efforts the MDC cooperates with the Charité - Universitätsmedizin Berlin and the Berlin Institute of Health (BIH) as well as with national partners such as the German Center for Cardiovascular Research and numerous international research institutions. More than 1,600 staff and guests from nearly 60 countries work at the MDC, just under 1,300 of them in scientific research. The MDC is funded by the German Federal Ministry of Education and Research (90 percent) and the State of Berlin (10 percent), and is a member of the Helmholtz Association of German Research Centers. http://www.mdc-berlin.de

Media Contact

Jana Schlütter
jana.schluetter@mdc-berlin.de
49-309-406-2121

http://www.mdc-berlin.de 

Jana Schlütter | EurekAlert!

More articles from Life Sciences:

nachricht Predicting a protein's behavior from its appearance
10.12.2019 | Ecole Polytechnique Fédérale de Lausanne

nachricht Could dark carbon be hiding the true scale of ocean 'dead zones'?
10.12.2019 | University of Plymouth

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

City research draws on Formula 1 technology for the construction of skyscrapers

10.12.2019 | Architecture and Construction

Reorganizing a computer chip: Transistors can now both process and store information

10.12.2019 | Information Technology

Could dark carbon be hiding the true scale of ocean 'dead zones'?

10.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>