Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rainbow of Glowing Corals Discovered in Depths of the Red Sea

29.06.2015

New coral pigments could have use in biomedical imaging applications

Glowing corals that display a surprising array of colours have been discovered in the deep water reefs of the Red Sea by scientists from the University of Southampton, UK, Tel Aviv University and the Interuniversity Institute for Marine Sciences (IUI), Israel, together with an international team of researchers.


Professor Jörg Wiedenmann

Fluorescence of corals commonly found in mesophotic reefs of the Red Sea.

The researchers, whose findings have been published online today in research journal PLOS ONE, hope that some of the coral pigments could be developed into new imaging tools for medical applications.

The team studied corals at depths of more than 50 metres and found that many of them glow brightly with fluorescent colours, ranging from green over yellow to red. The encounter of such a rainbow of coral colours in deep waters was unexpected, since their shallow-water counterparts in the same reef contain only green fluorescent pigments.

Jörg Wiedenmann, Professor of Biological Oceanography and Head of the University of Southampton’s Coral Reef Laboratory, explains: “These fluorescent pigments are proteins. When they are illuminated with blue or ultraviolet light, they give back light of longer wavelengths, such as reds or greens.

“Their optical properties potentially make them important tools for biomedical imaging applications, as their fluorescent glow can be used to highlight living cells or cellular structures of interest under the microscope. They could also be applied to track cancer cells or as tools to screen for new drugs.”

Gal Eyal, PhD candidate at the IUI, says: “Corals from these so-called mesophotic reefs are less well studied since they are beyond the depth limits of standard Scuba diving techniques. Advances in technical diving have enabled us to explore coral communities from these deeper waters.

“Since only the blue parts of the sunlight penetrate to depths greater than 50 metres, we were not expecting to see any red coloration around. To our surprise, we found a number of corals showing an intense green or orange glow. This could only be due to the presence of fluorescent pigments.”

Such pigments are often found in shallow water corals, where they can act as sunscreens for the corals and their symbiotic algae. Finding them in depths where corals are struggling to collect enough light to sustain the photosynthesis of their algal symbionts (a vital energy source for the corals) is therefore unexpected.

Dr Cecilia D’Angelo, Senior Research Fellow at Southampton, has studied corals commonly found in mesophotic depths in the experimental aquarium of the University’s Coral Reef Laboratory: “In many shallow water corals, the production of the pigments is tightly controlled by the amount and colour of the incidental light. In the majority of our deep water species, the pigment production is essentially independent from the light exposure of the coral animals.

“We found, however, that some of the pigments of these corals require violet light to switch from their nascent green colour to the red hue of the mature pigment. This is a particularly interesting property to develop markers for advanced microscopic imaging applications.”

The team now are now exploring which other biological functions these fluorescent pigments may fulfil.

Substantial parts of the research were conducted during the International Mesophotic Workshop 2014 held at the IUI in Eilat. Dr Yossi Loya, Professor of Zoology at Tel Aviv University and organiser of the workshop, concludes: “This study clearly shows the potential of interdisciplinary and international collaborations. We are delighted that the workshop has opened up such exiting new research avenues.”

Full details of the research appear in: Spectral Diversity and Regulation of Coral Fluorescence in a Mesophotic Reef Habitat in the Red Sea Eyal G, Wiedenmann J, Grinblat M, D'Angelo C, Kramarsky-Winter E, Treibitz T, et al. (2015). PLOS ONE 10(6): e0128697. doi:10.1371/journal.pone.0128697

Further references
Gittins, J. R., D'Angelo, C., Oswald, F., Edwards, R. J. and Wiedenmann, J. (2015), Fluorescent protein mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol Ecol, 24: 453–465. doi:10.1111/mec.13041
Free download: http://onlinelibrary.wiley.com/doi/10.1111/mec.13041/pdf

D'Angelo, C., E.G. Smith, F. Oswald, J. Burt, D. Tchernov and J. Wiedenmann. "Locally Accelerated Growth Is Part of the Innate Immune Response and Repair Mechanisms in Reef-Building Corals as Detected by Green Fluorescent Protein (Gfp)-Like Pigments." Coral Reefs 31, no. 4 (2012): 1045-1056.
Free download: http://link.springer.com/article/10.1007%2Fs00338-012-0926-8

Wong, C.K., Laos, A.J., Soeriyadi, A.H., Wiedenmann, J., Paul, M.G., Curmi, P.M.G, Gooding, J.J. et al. “Polymersomes Prepared from Thermoresponsive Fluorescent Protein–Polymer Bioconjugates: Capture of and Report on Drug and Protein Payloads." Angewandte Chemie 127, no. 18 (2015): 5407-5412.
http://onlinelibrary.wiley.com/doi/10.1002/ange.201412406/abstract

Ends
Notes for editors
1. Photos and video available via link: https://www.dropbox.com/sh/ihsrdumqijp5hrd/AADt7ESMzUBsTQQvSvx4t1hEa?dl=0  (See titles for captioning)
Credit: Prof. Jörg Wiedenmann

2. For a copy of the paper Spectral Diversity and Regulation of Coral Fluorescence in a Mesophotic Reef Habitat in the Red Sea Eyal G, Wiedenmann J, Grinblat M, D'Angelo C, Kramarsky-Winter E, Treibitz T, et al. (2015) PLOS ONE 10(6): e0128697. doi:10.1371/journal.pone.0128697 please contact Steven Williams, Media Relations, University of Southampton, Tel: 023 8059 2128, email: S.Williams@soton.ac.uk
3. For interview opportunities with Professor Wiedenmann, please contact media relations.
4. For more information about the Coral Reef Laboratory of the University of Southampton, based at the National Oceanography Centre Southampton: http://noc.ac.uk/corals
Prof. J. Wiedenmann: http://www.southampton.ac.uk/oes/research/staff/jw1w07.page

Dr. C. D’Angelo: http://www.southampton.ac.uk/oes/about/staff/cda1w07.page#background

For more information about other research projects at the Coral Reef Laboratory: http://www.southampton.ac.uk/oes/about/staff/jw1w07.page#research 
https://www.youtube.com/watch?v=fAoIkM00FAQ

Follow the Coral Reef Lab on Twitter: https://twitter.com/TheCoralReefLab

Like the Coral Reef Lab on Facebook: https://www.facebook.com/pages/Coral-Reef-Lab-NOC/234893246595342?sk=photos_stream

5. Ocean and Earth Science at the University of Southampton has reaffirmed its position as a world-leader in research excellence following publication of the national Research Excellence Framework 2014 (REF2014). http://www.southampton.ac.uk/oes/news/2014/12 /ocean_and_earth_science_at_southampton_once_again_ranked_world_leading.page?  
3. Through world-leading research and enterprise activities, the University of Southampton connects with businesses to create real-world solutions to global issues. Through its educational offering, it works with partners around the world to offer relevant, flexible education, which trains students for jobs not even thought of. This connectivity is what sets Southampton apart from the rest; we make connections and change the world. http://www.southampton.ac.uk/ 
http://www.southampton.ac.uk/weareconnected
#weareconnected
For further information contact:
Steven Williams, Media Relations, University of Southampton, Tel: 023 8059 2128, email: S.Williams@soton.ac.uk
www.soton.ac.uk/mediacentre/

Follow us on twitter: http://twitter.com/unisouthampton

Like us on Facebook: www.facebook.com/unisouthampton

Steve Williams | newswise

Further reports about: Coral Reef Laboratory Glowing Corals Red Sea Reef corals deep water fluorescent

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>