Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Project on microorganisms: Saci, the bio-factory


Little helpers with great effects: microorganisms produce food, medicine, chemicals and many other valuable products. In industry, they are used as mini factories for developing and improving products or increasing process efficiency. A new biotechnological research project focusses on a particularly robust microbe, Saci - Sulfolobus acidocaldarius to be precise. It is to assist in the utilisation of industrial waste products such as CO2 or glycerol. The ‘HotAcidFACToRY’ project is coordinated by the University of Duisburg-Essen (UDE) and receives 2.2 million euros from the Federal Ministry of Education and Research.*

Yeast and bacteria such as Escherichia coli and Bacillus subtilis are among the most widely used microorganisms in industry. Their properties are transferred or modified so that they transform substrates into value-added products or produce enzymes.

The montage shows the Champagne Pool (Waiotapu geothermal area, New Zealand) and - in the round picture - a collection of Saci cells as they occur there.

Photo: UDE/Siebers

However, their range of application is limited: yeast and bacteria cannot survive in high temperatures or low pH, i.e. acidic environments.

Archaea could serve as a promising alternative. ‘Many of these unicellular organisms can adapt to extreme habitats. They possess unique metabolic traits and robust enzymes’, Professor Bettina Siebers explains, ‘and yet their great biotechnological potential has been neglected so far. We would like to change this with our project.’

Professor Siebers is an expert in molecular enzyme technology and biochemistry and coordinates the ‘HotAcidFACTORY’ project supported by her UDE colleagues Markus Kaiser (Biological Chemistry) and Oliver Schmitz (Applied Analytical Chemistry). Researchers of the Universities of Freiburg and Bielefeld and TU Wien are also involved in the project.

The team wants to establish Sulfolobus acidocaldarius, or in short: Saci, as a bio-factory. This organism is a member of the Archaea with optimal growth at temperatures between 75 and 80 °C and a pH between 2 and 3, which is similar to lemon juice. It is not pathogenic and thus does not entail any health risks. Saci is found naturally in acidic hot springs in the Azores or Iceland, for example.

In their laboratories, the scientists aim to design Saci so that it can process industrial waste and transform it into new products such as bio-acids or bio-alcohols. ‘We want to modify Saci to enable CO2 fixation. Thus, the greenhouse gas released during numerous industrial processes is integrated into its metabolism’, Bettina Siebers continues, ‘alternatively, it can be made to live and feed on glycerol. This plant-based waste product is formed during the production of bio-fuels and is of interest for various applications.’

*HotAcidFACTORY (Sulfolobus acidocaldarius as a new thermoacidophile biological factory) is a three-year project, which is funded by the ‘Microbial factories for industrial bioeconomy—new platform organisms for innovative products and sustainable bioprocesses’ (Mikrobielle Biofabriken für die industrielle Bioökonomie – Neuartige Plattformorganismen für innovative Produkte und nachhaltige Bioprozesse) programme of the Federal Ministry of Education and Research. The UDE will receive 1.4 million of the total funding of 2.2 million euros.

Note for the editors:
A photomontage (Photo: UDE/Siebers) is available under the following link:
The montage shows the Champagne Pool (Waiotapu geothermal area, New Zealand) and - in the round picture - a collection of Saci cells as they occur there.

Editor: Ulrike Bohnsack, phone 0203/37 9-2429,
Translator: Carmela Welge,

Wissenschaftliche Ansprechpartner:

Prof. Dr. Bettina Siebers, Molecular Enzyme Technology and Biochemistry, phone: 0201/18 3-7061,

Ulrike Bohnsack | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>