Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Project on microorganisms: Saci, the bio-factory


Little helpers with great effects: microorganisms produce food, medicine, chemicals and many other valuable products. In industry, they are used as mini factories for developing and improving products or increasing process efficiency. A new biotechnological research project focusses on a particularly robust microbe, Saci - Sulfolobus acidocaldarius to be precise. It is to assist in the utilisation of industrial waste products such as CO2 or glycerol. The ‘HotAcidFACToRY’ project is coordinated by the University of Duisburg-Essen (UDE) and receives 2.2 million euros from the Federal Ministry of Education and Research.*

Yeast and bacteria such as Escherichia coli and Bacillus subtilis are among the most widely used microorganisms in industry. Their properties are transferred or modified so that they transform substrates into value-added products or produce enzymes.

The montage shows the Champagne Pool (Waiotapu geothermal area, New Zealand) and - in the round picture - a collection of Saci cells as they occur there.

Photo: UDE/Siebers

However, their range of application is limited: yeast and bacteria cannot survive in high temperatures or low pH, i.e. acidic environments.

Archaea could serve as a promising alternative. ‘Many of these unicellular organisms can adapt to extreme habitats. They possess unique metabolic traits and robust enzymes’, Professor Bettina Siebers explains, ‘and yet their great biotechnological potential has been neglected so far. We would like to change this with our project.’

Professor Siebers is an expert in molecular enzyme technology and biochemistry and coordinates the ‘HotAcidFACTORY’ project supported by her UDE colleagues Markus Kaiser (Biological Chemistry) and Oliver Schmitz (Applied Analytical Chemistry). Researchers of the Universities of Freiburg and Bielefeld and TU Wien are also involved in the project.

The team wants to establish Sulfolobus acidocaldarius, or in short: Saci, as a bio-factory. This organism is a member of the Archaea with optimal growth at temperatures between 75 and 80 °C and a pH between 2 and 3, which is similar to lemon juice. It is not pathogenic and thus does not entail any health risks. Saci is found naturally in acidic hot springs in the Azores or Iceland, for example.

In their laboratories, the scientists aim to design Saci so that it can process industrial waste and transform it into new products such as bio-acids or bio-alcohols. ‘We want to modify Saci to enable CO2 fixation. Thus, the greenhouse gas released during numerous industrial processes is integrated into its metabolism’, Bettina Siebers continues, ‘alternatively, it can be made to live and feed on glycerol. This plant-based waste product is formed during the production of bio-fuels and is of interest for various applications.’

*HotAcidFACTORY (Sulfolobus acidocaldarius as a new thermoacidophile biological factory) is a three-year project, which is funded by the ‘Microbial factories for industrial bioeconomy—new platform organisms for innovative products and sustainable bioprocesses’ (Mikrobielle Biofabriken für die industrielle Bioökonomie – Neuartige Plattformorganismen für innovative Produkte und nachhaltige Bioprozesse) programme of the Federal Ministry of Education and Research. The UDE will receive 1.4 million of the total funding of 2.2 million euros.

Note for the editors:
A photomontage (Photo: UDE/Siebers) is available under the following link:
The montage shows the Champagne Pool (Waiotapu geothermal area, New Zealand) and - in the round picture - a collection of Saci cells as they occur there.

Editor: Ulrike Bohnsack, phone 0203/37 9-2429,
Translator: Carmela Welge,

Wissenschaftliche Ansprechpartner:

Prof. Dr. Bettina Siebers, Molecular Enzyme Technology and Biochemistry, phone: 0201/18 3-7061,

Ulrike Bohnsack | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications
06.04.2020 | Technische Universität Dresden

nachricht First SARS-CoV-2 genomes in Austria openly available
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Latest News

TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications

06.04.2020 | Life Sciences

Lade-PV Project Begins: Vehicle-integrated PV for Electrical Commercial Vehicles

06.04.2020 | Power and Electrical Engineering

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

Science & Research
Overview of more VideoLinks >>>