Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overactive Scavenger Cells May Cause Neurodegeneration in Alzheimer's

30.06.2017

For the first time, researchers at the University of Zurich have demonstrated a surprising effect of microglia, the scavenger cells of the brain: If these cells lack the TDP-43 protein, they not only remove Alzheimer’s plaques, but also synapses. This removal of synapses by these cells presumably lead to neurodegeneration observed in Alzheimer's and other neurodegenerative diseases.

Similar to other neurodegenerative disorders, Alzheimer's is a disease in which the cognitive abilities of afflicted persons continuously worsen. The reason is the increasing loss of synapses, the contact points of the neurons, in the brain. In the case of Alzheimer's, certain protein fragments, the β-amyloid peptides, are suspected of causing the death of neurons. These protein fragments clump together and form the disease's characteristic plaques.


Microglia cell with phagocytic structure (in cyan) containing synaptic proteins (in red). (Image: UZH)

Voracious microglia cells destroy brain synapses

Together with researchers from Great Britain and the United States, the group of Lawrence Rajendran from the Institute for Regenerative Medicine of the University of Zurich now shows that dysfunctional microglia cells contribute to the loss of synapses in Alzheimer's and other neurodegenerative diseases. These scavenger cells usually monitor the function of neurons in the brain by removing excess synapses during development or toxic protein aggregates. Until now, their role in neurodegenerative disorders remains controversial.

In an initial step, the researchers looked at the effect that certain risk genes for Alzheimer's have on the production of the β-amyloid peptide. They found no effect in neurons. This led the researchers then to examine the function of these risk genes in microglia cells – and made a discovery: If they turned off the gene for the TDP-43 protein in these scavenger cells, these cells remove β-amyloid very efficiently. This is due to the fact that the lack of TDP-43 protein in microglia led to an increased scavenging activity, called phagocytosis.

The TDP-43 protein regulates the activity of scavenger cells

In the next step, researchers used mice, which acted as a disease model for Alzheimer's. In this case, as well, they switched off TDP-43 in microglia and observed once more that the cells efficiently eliminated the β-amyloid. Surprisingly, the increased scavenging activity of microglia in mice led also to a significant loss of synapses at the same time. This synapse loss occurred even in mice that do not produce human amyloid. This finding that increased phagocytosis of microglia can induce synapse loss led researchers to hypothesize that perhaps, during aging, dysfunctional microglia could display aberrant phagocytic activity. “Nutrient deprivation or starvation-like mechanism during aging could enhance phagocytic mechanism in microglia and this could lead to synaptic loss" Lawrence Rajendran assumes.

Direct role in neurodegeneration

The results show that the role of microglia cells in neurodegenerative diseases like Alzheimer's has been underestimated. It is not limited to influencing the course of the disease through inflammatory reactions and the release of neurotoxic molecules as previously assumed. Instead, this study shows that they can actively induce neurodegeneration. "Dysfunction of the microglia cells may be an important reason why many Alzheimer's medications reduce the amyloid plaques in clinical testing, but the cognitive functions in patients do not lead to improvement," Rajendran says.

This work was supported by the Swiss National Science Foundation, Velux Foundation, Synapsis Foundation, Cure Alzheimer Fund and the Forschungskredit of the University of Zurich.

Literature:
Rosa C. Paolicelli, Ali Jawaid, Christopher M. Henstridge, Andrea Valeri, Mario Merlini, John L. Robinson, Edward B. Lee, Jamie Rose, Stanley Appel, Virginia M.-Y. Lee, John Q. Trojanowski, Tara Spires-Jones, Paul E. Schulz, and Lawrence Rajendran. TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. Neuron. 29 June 2017; doi:1016/j.neuron.2017.05.037

Contact:
Prof. Lawrence Rajendran, PhD
Institute for Regenerative Medicine
University of Zurich
Phone: +41 44 634 88 60
E-mail: lawrence.rajendran@irem.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2017/microglia-Alzheimers.html

Kurt Bodenmüller | Universität Zürich

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>