Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers develop new drug approach that could lead to cures for wide range of diseases

10.12.2013
A team led by a longtime Oregon Health & Science University researcher has demonstrated in mice what could be a revolutionary new technique to cure a wide range of human diseases — from cystic fibrosis to cataracts to Alzheimer's disease — that are caused by "misfolded" protein molecules.

Misfolded protein molecules, caused by gene mutation, are capable of maintaining their function but are misrouted within the cell and can’t work normally, thus causing disease. The OHSU team discovered a way to use small molecules that enter cells, fix the misfolded proteins and allow the proteins to move to the correct place and function normally again.

The researchers were led by P. Michael Conn, Ph.D., who was a senior scientist in reproductive sciences and neuroscience at OHSU's Oregon National Primate Research Center and professor of physiology and pharmacology, cell biology and development and obstetrics and gynecology at OHSU for the past 19 years. This month, Conn joined Texas Tech University Health Sciences Center as senior vice president for research and associate provost.

The team’s work will be published this week in the early online edition of the Proceedings of the National Academy of Sciences. The work was the culmination of 13 years of work on the process by Conn and Jo Ann Janovick, former senior research associate at the ONPRC who is now also at TTUHSC. Richard R. Behringer, Ph.D., from the University of Texas MD Anderson Cancer Center, M. David Stewart, Ph.D., from the University of Houston, and Douglas Stocco, Ph.D., and Pulak Manna, Ph.D., from the department of biochemistry/microbiology at TTUHSC, also contributed to the work.

Conn and his team perfected the process in mice, curing them of a form of disease that causes males to be unable to father offspring. The identical disease occurs in humans and Conn believes the same concept can work to cure human disease as well.

"The opportunity here is going to be enormous," said Conn, "because so many human diseases are caused by misfolded proteins. The ability of these drugs – called ‘pharmacoperones’ – to rescue misfolded proteins and return them to normalcy could someday be an underlying cure to a number of diseases. Drugs that act by regulating the trafficking of molecules within cells are a whole new way of thinking about treating disease.”

Proteins must fold into three-dimensional shapes in precise ways to do their work within human cells. Before recent discoveries about misfolded proteins, scientists believed that proteins that were inactive were intrinsically non-functional. But work by Conn and others revealed that, when the proteins are misfolded, the cell's "quality control system" misroutes them within the cell and they cease to function only because of that misrouting. Pharmacoperones can fix misfolded proteins and thus make them functional again.

Scientists had in recent years observed this process in cells under a microscope. The work of Conn's team is the first time the process has worked in a living laboratory animal.

“These findings show how valuable laboratory animals are in identifying new treatments for human disease,” said Conn. “We expect that these studies will change the way drug companies look for drugs, since current screening procedures would have missed many useful pharmacoperone drugs.”

A wide range of diseases are caused by an accumulation of misfolded proteins. Among the diseases are neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease. Other diseases include certain types of diabetes, inherited cataracts and cystic fibrosis.

Conn said the next steps will be clinical trials to see whether the same technique can work in humans.

The research was funded by the National Institutes of Health (grants OD012220 and DK85040), the Ben F. Love Endowment, the American Heart Association, the Texas Heart Institute and the Robert A. Welch Foundation.

About ONPRC

The ONPRC is one of the eight National Primate Research Centers supported by NIH. ONPRC is a registered research institution, inspected regularly by the United States Department of Agriculture. It operates in compliance with the Animal Welfare Act and has an assurance of regulatory compliance on file with the National Institutes of Health. The ONPRC also participates in the voluntary accreditation program overseen by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

About OHSU

Oregon Health & Science University is a nationally prominent research university and Oregon’s only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children’s Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university’s social mission.

OHSU’s Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer’s disease and new treatments for Parkinson’s disease, multiple sclerosis and stroke. OHSU’s Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.

Todd Murphy | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Straight to the heart
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fungus produces highly effective surfactant
21.06.2019 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Non-invasive view into the heart

24.06.2019 | Medical Engineering

Fingerprint spectroscopy within a millisecond

24.06.2019 | Trade Fair News

Straight to the heart

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>