Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Research Shows How Some Plants Invade, Take Over Others

08.07.2009
Research at the University of Nebraska-Lincoln gives important new information on how plants can change "nitrogen cycling" to gain nitrogen and how this allows plant species to invade and take over native plants.

Biologists know that when plants battle for space, often the actual battle is for getting the nitrogen.

Now, research at the University of Nebraska-Lincoln gives important new information on how plants can change "nitrogen cycling" to gain nitrogen and how this allows plant species to invade and take over native plants.

In an article published July 6 in the scientific journal Proceedings of the National Academy of Sciences, UNL biologist Johannes "Jean" Knops demonstrates why one invasive plant species is replacing native species -- it's because of its ability to take up and hold on to nitrogen.

Biologists know that nitrogen is crucial to plant growth that invasive species often grow better and acquire more nitrogen, but have been uncertain about which mechanism allows invasive species to gain an advantage.

Over seven years' study at the Cedar Creek Ecosystem Science Reserve in central Minnesota, Knops and PhD candidate Ramesh Laungani studied the nitrogen pool and fluxes in the ecosystem that included seven grassland and forest species, including the Eastern white pine (Pinus strobus), a species that is rapidly invading Minnesota prairies. Over time they discovered that the pine had accrued nearly twice as much biomass as the next most productive species, and more than three times as much biomass relative to the other species.

"The higher productivity of the white pine is caused by an increased biomass nitrogen pool that was not driven by increased ecosystem level nitrogen inputs," Knops said. "But we found the white pine takes up nitrogen and holds on to it much longer, with leads to an accumulation of much more nitrogen in the plant and a depletion of nitrogen in the soil. We concluded high nitrogen residence time was the key mechanism driving the significantly higher plant nitrogen pool and the high productivity of that species."

In other words, pines mine the soil for organic nitrogen, decrease soil fertility and use this nitrogen to outcompete other species.

Knops, a plant and ecosystems ecologist, said the higher nitrogen residence time creates a positive feedback that redistributes nitrogen from the soil into the plant's nitrogen cycling. And this strengthened the species to support its invasion.

"What this higher nitrogen residence time means is that the plant is taking nitrogen from the soil and using it to make the plant grow more efficiently, and it also gives them an upper hand in being able to invade other species."

Biologists had identified six mechanisms that influence plant nitrogen use or acquisition: photosynthetic tissue allocation, photosynthetic nitrogen use efficiency, nitrogen fixation, nitrogen-leaching losses, gross nitrogen mineralization and plant nitrogen residence times. This study is the first to study all together and pinpoint the mechanism that explains why this pine is a successful invader.

Knops said he was somewhat surprised by the pines' ability to pull so much nitrogen out of the soil, especially in the degraded old fields that were studied.

Knowing this finding about nitrogen cycling with the white pine species may lead to important discoveries in how to stop invasions of other non-native species, like the Eastern red cedar, a destructive invader in the Great Plains; green ash, hackberry, or Chinese elms, or eventually to weedy exotic grasses that invade our native rangelands.

The study is the latest of several Knops has conducted at the Minnesota field site; this one began in 1999 with data taken in 2006. He has other projects in the mid-stage of 10- to 20-year timeframes, one looking at the establishment phase of pines, and another on grassland systems and their invasive species and abundance. He said his research field does require patience and longterm funding.

National Science Foundation, the University of Nebraska and the Center for Invasive Plant Species Management at Montana State University helped support the research.

Steve Smith | Newswise Science News
Further information:
http://www.unl.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>