Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology has bright prospects for understanding plant biodiversity

13.06.2018

University of Alberta biologists use light spectroscopy to study the functional diversity and evolutionary history of plants

Biologists get a new look at plant biodiversity and function with new imaging technology developed at the University of Alberta.


An example of the type of images captured by the imaging spectrometer. By exploring the colours of light reflected by the plants, researchers are able to identify subtle differences in plant function. Red represents sun induced fluorescence, green is chlorophyll content, and blue is the photochemical reflectance index, indicating plant stress and highlighting differences in photosynthetic performance

Credit: Ran Wang

"Biodiversity and ecosystem function are both changing with human disturbance and climate change, and our research provides a new tool for assessing these changes and renewed hope for improved environmental monitoring," explained John Gamon, professor in the Departments of Earth and Atmospheric Sciences and Biological Sciences and co-author in the study. "The information derived from this technology provides a practical way to address biodiversity and ecosystem function over large landscapes."

The method uses an imaging spectrometer, similar to a conventional camera but with a thousand colours, mounted on a moving robotic cart to measure the spectra of light reflected from plants in visible, near-infrared, and short-wave infrared regions to measure differences in plant traits. Differences in reflected radiation allow scientists to not only see more than what the naked eye allows, but also to sample both the functional diversity and evolutionary history of individual plants in the environment.

This work is of particular importance because, as was noted in a previous study, 2050 is expected to see a loss in world economic productivity as a result of global warming threatening one-fifth of vascular plant species. The technological advance presented in this study gives researchers a new tool to monitor biodiversity, combat these threats, and raise awareness of biodiversity importance.

Traditional methods of observing plant biodiversity require extensive time, money, and biologists in the field with in-depth knowledge of plant species to identify them. However, using remote sensing to observe and assess biodiversity, allows researchers to not only observe and cover much larger areas--including areas that may be hard to reach--but to reveal and observe the differences in plant diversity and function more quickly.

"To build a strong argument for protecting and restoring biodiversity globally, it is important to quantify the services biodiversity provides for us, including nutrition, clean water and air, safety, health and enjoyment," wrote Anna Schweiger, lead author of the study, in a blog post.

The technology was originally developed by John Gamon and Ran Wang, a former UAlberta PhD student as a part of his thesis work.

Interdisciplinary approach

"The interdisciplinary nature of the research is key," said Gamon, in note of the collaborative and interdisciplinary nature of the study.

"Remote sensing--detecting the interaction of electromagnetic radiation and matter--is a fascinating place where physics meets plant physiology and ecology, and different plants display a range of different solutions to this, allowing us to detect plant diversity.

"Here at UAlberta, we developed new ways of measuring these interactions involving new imaging spectrometers and robotic carts, both of which were instrumental in this study. Taxonomic, physiological and evolutionary perspectives, spectral data analysis, image processing and a lot of powerful statistics, were combined in this work, a good example of team science."

###

The paper, "Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function," was published in Nature Ecology & Evolution (doi: 10.1038/s41559-018-0551-1).

Media Contact

Katie Willis
katie.willis@ualberta.ca
780-267-0880

 @ualberta

http://www.ualberta.ca 

Katie Willis | EurekAlert!

More articles from Life Sciences:

nachricht Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria
18.02.2020 | Heinrich-Heine-Universität Düsseldorf

nachricht Blood and sweat: Wearable medical sensors will get major sensitivity boost
18.02.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria

18.02.2020 | Life Sciences

First research results on the "spectacular meteorite fall" of Flensburg

18.02.2020 | Earth Sciences

Blood and sweat: Wearable medical sensors will get major sensitivity boost

18.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>