Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology has bright prospects for understanding plant biodiversity

13.06.2018

University of Alberta biologists use light spectroscopy to study the functional diversity and evolutionary history of plants

Biologists get a new look at plant biodiversity and function with new imaging technology developed at the University of Alberta.


An example of the type of images captured by the imaging spectrometer. By exploring the colours of light reflected by the plants, researchers are able to identify subtle differences in plant function. Red represents sun induced fluorescence, green is chlorophyll content, and blue is the photochemical reflectance index, indicating plant stress and highlighting differences in photosynthetic performance

Credit: Ran Wang

"Biodiversity and ecosystem function are both changing with human disturbance and climate change, and our research provides a new tool for assessing these changes and renewed hope for improved environmental monitoring," explained John Gamon, professor in the Departments of Earth and Atmospheric Sciences and Biological Sciences and co-author in the study. "The information derived from this technology provides a practical way to address biodiversity and ecosystem function over large landscapes."

The method uses an imaging spectrometer, similar to a conventional camera but with a thousand colours, mounted on a moving robotic cart to measure the spectra of light reflected from plants in visible, near-infrared, and short-wave infrared regions to measure differences in plant traits. Differences in reflected radiation allow scientists to not only see more than what the naked eye allows, but also to sample both the functional diversity and evolutionary history of individual plants in the environment.

This work is of particular importance because, as was noted in a previous study, 2050 is expected to see a loss in world economic productivity as a result of global warming threatening one-fifth of vascular plant species. The technological advance presented in this study gives researchers a new tool to monitor biodiversity, combat these threats, and raise awareness of biodiversity importance.

Traditional methods of observing plant biodiversity require extensive time, money, and biologists in the field with in-depth knowledge of plant species to identify them. However, using remote sensing to observe and assess biodiversity, allows researchers to not only observe and cover much larger areas--including areas that may be hard to reach--but to reveal and observe the differences in plant diversity and function more quickly.

"To build a strong argument for protecting and restoring biodiversity globally, it is important to quantify the services biodiversity provides for us, including nutrition, clean water and air, safety, health and enjoyment," wrote Anna Schweiger, lead author of the study, in a blog post.

The technology was originally developed by John Gamon and Ran Wang, a former UAlberta PhD student as a part of his thesis work.

Interdisciplinary approach

"The interdisciplinary nature of the research is key," said Gamon, in note of the collaborative and interdisciplinary nature of the study.

"Remote sensing--detecting the interaction of electromagnetic radiation and matter--is a fascinating place where physics meets plant physiology and ecology, and different plants display a range of different solutions to this, allowing us to detect plant diversity.

"Here at UAlberta, we developed new ways of measuring these interactions involving new imaging spectrometers and robotic carts, both of which were instrumental in this study. Taxonomic, physiological and evolutionary perspectives, spectral data analysis, image processing and a lot of powerful statistics, were combined in this work, a good example of team science."

###

The paper, "Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function," was published in Nature Ecology & Evolution (doi: 10.1038/s41559-018-0551-1).

Media Contact

Katie Willis
katie.willis@ualberta.ca
780-267-0880

 @ualberta

http://www.ualberta.ca 

Katie Willis | EurekAlert!

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>