Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene mutation associated with Fanconi anemia

14.07.2017

Fanconi anemia is a rare genetic disease characterized by high cancer risk. Researchers of the University of Würzburg now have revealed a new Fanconi anemia gene that is involved in complex DNA repair processes and may also play a relevant role in cancer prevention.

Fanconi anemia is a rare genetic disease characterized by bone marrow failure heralded by low platelet counts and unusually large red blood cells. Mutations in over 20 genes have been identified as causative for Fanconi anemia, which encode proteins commonly involved in DNA repair mechanisms.


A: The enzyme RFWD3 helps target other proteins on single-stranded DNA for degradation. B: Cells lacking RFWD3 show DNA repair defects.

(Figure modified from Inano et al.)

The failure to repair DNA is considered the source of increased cancer risk in individuals with Fanconi anemia. Ongoing efforts to identify additional genes and pathways linked to this disease may concurrently reveal potential susceptibility genes for hereditary cancers.

This week in the Journal of Clinical Investigation (JCI), a team led by Detlev Schindler at the Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, reports classical Fanconi anemia symptoms in a 12-year-old individual without mutations in any of the known Fanconi anemia genes.

Mutations detected

Sequencing of this individual’s genome detected mutations in both alleles of the gene RFWD3, which encodes an enzyme that helps target other proteins on single-stranded DNA for degradation. This process is impaired in patient’s cells which rendered them more sensitive to chromosome breakage and DNA damage, compared to cells from healthy individuals.

Other cells either lacking RFWD3 or genetically engineered with the patient’s missense mutation showed similar DNA repair defects, which were rescued by expression of wild-type RFWD3. Moreover, RFWD3-deficient mice exhibited a phenotype that resembles other mouse models of Fanconi anemia. Together, these findings support the identification of RFWD3 as a Fanconi anemia gene.

„Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia“, Kerstin Knies, Shojiro Inano, María J. Ramírez, Masamichi Ishiai, Jordi Surrallés, Minoru Takata, and Detlev Schindler. Journal of Clinical Investigation, 10. July 2017, DOI: 10.1172/JCI92069

Schindler and collaborators further describe the mechanisms by which RFWD3 mediates DNA repair in two accompanying studies recently published in Molecular Cell. Future explorations of this enzyme may reveal its importance as a therapeutic target in certain subtypes of Fanconi anemia or cancer.

Contact

Prof. Dr. Detlev Schindler, Institute of Human Genetics, University of Würzburg, Germany, T +49 931 31-88075, schindler@biozentrum.uni-wuerzburg.de

Weitere Informationen:

http://www.jci.org/articles/view/92069 Publication in the Journal of Clinical Investigation
https://doi.org/10.1016/j.molcel.2017.04.022 Publication 1 in „Molecular Cell“
http://dx.doi.org/10.1016/j.molcel.2017.04.021 Publication 2 in „Molecular Cell“

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Further reports about: Cell DNA DNA repair Molecular Cell enzyme gene mutation

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>