Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New deep-water coral discovered

22.10.2019

Pax, Latin for 'peace' made its way into the scientific name of a new coral discovered off Pacific Panama and described in the journal Bulletin of Marine Science. According to researchers at the Smithsonian Tropical Research Institute (STRI), the Centro de Investigacion en Ciencias del Mar y Limnologia at the University of Costa Rica (CIMAR) and collaborating institutions, it alludes to the need for making peace with nature and ending the devastation of the oceans.

Psammogorgia pax, collected at a depth of 63 meters (207 feet) in Hannibal Bank --a flat-topped seamount located in Coiba National Park, a biodiversity hotspot and World Heritage Site--, is part of an unexplored and understudied marine ecosystem: the mesophotic coral communities.


The composition of sclerites of this white and fan-shaped coral is characteristic for this species and differentiates it from others in the same genus.

Credit: Hector Guzman/STRI

These difficult-to-access habitats, found 40--150 meters deep and in-between shallow-water reefs and deep-water corals, are under increasing need for protection, yet little is known about their ecology and biodiversity.

Lately, submersibles have enabled marine scientists to explore these communities and collect samples, yielding a number of new octocoral species for the tropical eastern Pacific, including Adelogorgia hannibalis (2018), Thesea dalioi (2018) and Eugorgia siedenburgae (2013), all from the Hannibal Bank.

"Exploring the mesophotic zone and beyond has always been a challenge for scientists," said Hector M. Guzman, STRI marine ecologist. "We need submersibles or remotely operated underwater vehicles (ROVs) to search and collect specimens. Not always do we have access to these resources, but each time we go deep, we come up with something new."

P. pax is a white and fan-shaped coral. The colony is made of microscopic bone-like calcium carbonate structures, called sclerites. The composition of sclerites is characteristic for this species and differentiates it from others in the same genus, like P. arbuscula, a common shallow-water species. Until now, eastern Pacific Psammogorgia species have only been reported in shallow waters down to 30 meters (98 feet) deep. However, the occurrence of the genus in deeper waters was expected.

"Because, apart from our personal observations, we have found specimens in museum collections belonging to Psammogorgia that are the result of historical expeditions that acquired these samples by dredging down to mesophotic depths," said Odalisca Breedy, marine biologist at CIMAR and co-author of the study. "These specimens remain unidentified and have not been considered in any biodiversity assessments."

The recent discovery and description of P. pax is a valuable contribution to understanding octocoral diversity in Panama, a major component of mesophotic and deep-water coral communities. Ultimately, increasing knowledge about these ecosystems will be essential for safeguarding their long-term conservation.

Meanwhile, the marine researchers remain concerned about the future of the Hannibal Bank seamount, whose rich biodiversity has only been recently explored. They consider that the area could benefit from stronger environmental and conservation protections.

"The management of this international protected seamount could be reinforced, as it faces heavy fishing pressure," Guzman said. "The same goes for the rest of Panamanian seamounts that we haven't explored yet for lack of resources."

###

Members of the research team are affiliated with the Smithsonian Tropical Research Institute, the Centro de Investigacion en Ciencias del Mar y Limnologia at the University of Costa Rica, the Centro de Investigacion en Estructuras Microscopicas at the University of Costa Rica and the Department of Earth and Environmental Sciences ad Ludwig-Maximilians-Universitat Munchen. Research was partially funded by the Smithsonian Tropical Research Institute, the International Community Foundation, the Siedenburg family, Vicerrectoria de Investigacion de la Universidad de Costa Rica and the Secretaria Nacional de Ciencia, Tecnologia e Innovacion de Panama (SENACYT).

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The institute furthers the understanding of tropical biodiversity and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems.

Leila Nilipour | EurekAlert!
Further information:
http://dx.doi.org/10.5343/bms.2019.0072

More articles from Life Sciences:

nachricht Developing a digital holography-based multimodal imaging system to visualize living cells
03.06.2020 | Kobe University

nachricht Possible physical trace of short-term memory found
03.06.2020 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

The cascade to criticality

03.06.2020 | Physics and Astronomy

These flexible feet help robots walk faster

03.06.2020 | Power and Electrical Engineering

Developing a digital holography-based multimodal imaging system to visualize living cells

03.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>