Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine Lab Tracks Pollutants in Dolphins and Beluga Whales

12.05.2011
Bottlenose dolphins* and beluga whales**, two marine species at or near the top of their respective food webs, accumulate more chemical pollutants in their bodies when they live and feed in waters near urbanized areas, according to scientists working at the Hollings Marine Laboratory (HML), a government-university collaboration in Charleston, S.C.

In papers recently published online by the journal Environmental Science & Technology, one research team looked at the levels of persistent organic pollutants (POPs) found in male dolphins along the U.S. East and Gulf of Mexico coasts and Bermuda, while the other group examined the levels of perfluorinated compounds (PFCs) in beluga whales at two Alaskan locations. Data gathered in both studies are expected to serve as baseline measurements for future research to define the health effects and impacts of these pollutants on the two species.

POPs are a large group of man-made chemicals that, as their name indicates, persist in the environment. They can spread globally through air and water, accumulate in the food chain, and may have carcinogenic, neurodevelopmental, immune or endrocrine effects on both wildlife and humans. To study POP concentrations in male bottlenose dolphins (Tursiops truncatus), researchers from the National Institute of Standards and Technology (NIST), the National Oceanic and Atmospheric Administration (NOAA), the Duke University Marine Laboratory, Florida State University and the Chicago Zoological Society teamed up to collect and examine blubber biopsy samples from 2000 to 2007 at eight locations along the U.S. East coast (from New Jersey to Eastern Florida), five sites in the eastern Gulf of Mexico and off Bermuda. The researchers analyzed the dolphin blubber for POPs that were once used as insecticides (such as DDT), insulating fluids (polychlorinated biphenyls, or PCBs), flame retardants (polybrominated diphenyl ethers, or PBDEs) and a fungicide (hexachlorobenzene, or HCB).

Overall, PCBs were the pollutants found in the highest concentrations across the 14 sampling locations, followed by DDT, other pesticides and PBDEs, and HCB. Levels for POPs were statistically higher in dolphins living and feeding in waters near more urban and industrialized areas. The exceptions were the PCB levels recorded in dolphins living in waters near Brunswick, Ga., contaminated from a former factory that is now an Environmental Protection Agency “Superfund” cleanup site. These PCB levels were the highest ever observed in a group of living marine mammals.

In the second study, a NIST team analyzed the levels of 12 PFCs in livers harvested from 68 beluga whales (Delphinapterus leucas) that had lived and fed in two Alaskan locations: Cook Inlet in the urban southern part of the state and the Chukchi Sea in the remote northern part. The samples were collected from 1989 to 2006 by Native Alaskans during subsistence hunts and stored at NIST’s National Marine Mammal Tissue Bank (NMMTB). This was the first study to look at the concentration of PFCs in belugas from Alaska.

PFCs have been used as nonstick coatings and additives in a wide variety of goods including cookware, furniture fabrics, carpets, food packaging, fire-fighting foams and cosmetics. They are very stable, persist for a long time in the environment and are known to be toxic to the liver, reproductive organs and immune systems of laboratory mammals.

PFCs were detected in all of the beluga livers, with two compounds—perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA)—found in more than half the samples. All but one of the PFC concentrations measured were significantly higher in the Cook Inlet belugas, an expected result given the nearby urban, industrialized area. The exception was PFOSA, where levels were higher amongst the Chukchi Sea whales. The researchers are unsure if this is the result of the pollutant being carried into the remote region by ocean currents, atmospheric transport or a combination of both. They also found that PFC concentrations in belugas increased significantly over the seven-year study period and were mostly higher in males.

The HML is a unique partnership of governmental and academic agencies including NIST, NOAA’s National Ocean Service, the South Carolina Department of Natural Resources, the College of Charleston and the Medical University of South Carolina. NIST maintains the NMMTB at the HML to provide archived samples for retrospective analysis of contaminants of emerging concern.

* J. Kucklick, L. Schwacke, R. Wells, A. Hohn, A. Guichard, J. Yordy, L. Hansen, E. Zolman, R. Wilson, J. Litz, D. Nowacek, T. Rowles, R. Pugh, B. Balmer, C. Sinclair and P. Rosel. Bottlenose dolphins as indicators of persistent organic pollutants in the western north Atlantic ocean and northern gulf of Mexico. Environmental Science & Technology. Published online Apr. 28, 2011.

** J.L. Reiner, S.G. O’Connell, A.J. Moors, J.R. Kucklick, P.R. Becker and J.M. Keller. Spatial and temporal trends of perfluorinated compounds in beluga whales (Delphinapterus leucas) from Alaska. Environmental Science & Technology. Published online Feb. 10, 2011.

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Genome Duplication Drives Evolution of Species
25.09.2018 | Universität Zürich

nachricht Why it doesn’t get dark when you blink
25.09.2018 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Why it doesn’t get dark when you blink

25.09.2018 | Life Sciences

Genome Duplication Drives Evolution of Species

25.09.2018 | Life Sciences

Desert ants have an amazing odor memory

25.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>