Liquid or solid? Charged nanoparticles in lipid membrane decide

Using charged nanoparticles, researchers at the University of Illinois have found a new way to stimulate patchiness in phospholipid membranes.

“We are seeing a previously unsuspected responsiveness in phospholipid membranes,” said Steve Granick, a Founder Professor of Engineering at the U. of I. “What we thought was possible only with the specificity of certain proteins, we now see can happen with simple, charged nanoparticles.”

Lipids are the building blocks of cell membranes. In earlier work, Granick and graduate student Liangfang Zhang found a way to stabilize sensitive lipid membranes by attaching charged nanoparticles to the membrane surface.

Now, Granick, Zhang, graduate research assistant Bo Wang and research scientist Sung Chul Bae show that a phospholipid membrane can coexist in two phases – solid and liquid – according to what binds to it. This inherent patchiness presents an additional mechanism for changing the stiffness of phospholipid membranes.

The researchers report their work in a paper to be published next week in the Online Early Edition of the Proceedings of the National Academy of Sciences.

Using fluorescence and calorimetry methods, the researchers studied interactions between charged nanoparticles and membranes formed from single-component lipids. Because the membrane was composed of one sole lipid type, the traditional explanation for spatial patchiness – an uneven distribution of different lipids – was eliminated.

While a variety of nanoparticles was used, the most common type was polystyrene spheres about 20 nanometers in diameter (a nanometer is 1 billionth of a meter). Where the nanoparticles attached to the membrane, the membrane responded by changing phase.

“The electric charge acted as a switch,” Granick said. “Nanoparticles with a negative charge switched membranes from liquid to solid. Nanoparticles with a positive charge switched the membranes from solid to liquid.”

Phase changes occurred in patches of membranes where phospholipid molecules swiveled after binding to charged nanoparticles. This binding-induced behavior, where the same lipid can coexist in two different phases, offers a new mechanism for modulating stiffness in membranes.

In future work, the researchers plan to study the effects of smaller, charged nanoparticles; the effects of charged nanoparticles on living cells; and novel ways to stabilize lipid membranes for targeted drug delivery.

“These experiments are helping us better understand both the structure of phospholipid membranes and the potential biological effects of exposure to nanoparticles found in our normal, everyday environment,” Granick said.

Media Contact

James E. Kloeppel EurekAlert!

More Information:

http://www.uiuc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Partners & Sponsors