Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Leakage on the continental margin


Gas seepage off Norwegian coast spans hundreds of kilometers

Off the coast of Spitsbergen, on the upper continental margin between Bear Island and Kongsfjord, methane gas is emitted from the seafloor at more than a thousand sites. Past expeditions have reported methane gas seeps off the coast of Prins Karls Forland, presumed by some scientists to be a result of the dissociation of methane hydrates in the sediments caused by warming in recent years.

The Research Vessel HEINCKE at the pier at Ny-Ålesund.

Photo: G. Bohrman/MARUM-Center for Marine Environmental Sciences, University of Bremen

Team members sample water for methane analysis.

Photo: G. Bohrman/MARUM-Center for Marine Environmental Sciences, University of Bremen

The results of two cruises of the Research Vessel HEINCKE in 2015 have revealed, however, that methane emissions are not limited to this site, but extend across five degrees of latitude along the continental margin, and is very likely associated with the Hornsund Fracture Zone. Susan Mau has now published the results together with her colleagues at MARUM – Center for Marine Environmental Sciences at the University of Bremen, and others from the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung in Bremerhaven and Oregon State University (USA).

The investigations of Susan Mau and her colleagues are based on data from two research cruises in the summer of 2015. The gas discharge sites were identified hydroacoustically as patterns called “flares.” “We already knew about the gas seeps off Prins Karls Forland because that site has been thoroughly studied,” explains Dr. Mau.

Their data, however, reveal the presence of numerous emission sites along the entire coast. The sites follow a fracture zone on the upper continental margin that could be the conduit for the methane rising from depths along this zone. Like air from a perforated bicycle inner tube submerged in water, the rising gas can escape along the fractures and ascend through the sea water. According to Mau, the scientists measured consistently high methane concentrations along the entire slope off the coast of Svalbard. “But they were especially high at the sites where multiple flares were seen.”

In addition, the gas seepage conspicuously occurred at bathymetrically elevated areas rather than in the troughs between them. Susan Mau presumes the reason for this is fine-grained deposits sealing the pathways that gas could otherwise escape from.

Why have so many emission sites been discovered off Prins Karls Forland? Are there even more sites off the coast of Svalbard? These were the initial questions to be addressed by the cruises led by Susan Mau and Gerhard Bohrmann. Furthermore, rock samples and seismic studies have shown that the entire coast is characterized by similar tectonic conditions and glacial history. The gas seeps verified off the coast of Svalbard are interesting primarily because scientists have thought that the methane escaping here is released from methane hydrates. Methane hydrates have a solid ice-like structure that is only stable under specific pressure conditions at rather well defined depths and relatively low temperatures. When the water becomes warmer methane hydrate is no longer stable and methane is released.

Should the water warm up – due to climate change, for example – methane hydrates can only occur in deeper sediments. The boundary zone in which gas hydrates become stable is effectively shifted downward. The gas bubble emissions observed by Mau and her colleagues, however, also occur above this boundary, and thus are not anthropogenically triggered gas released from methane hydrates.

These methane seepage sites are the result, rather, of large amounts of gas from great depths escaping along the Hornsund Fracture Zone, an extensive fault zone in the Earth’s crust, a natural geologic process. This produces high gas concentrations that the team has confirmed over a range of hundreds of kilometers along the coast. The data from the summer of 2015 also indicate that the dissolved methane is oxidized by microbes within the water column and only a small proportion escapes into the atmosphere. The microbes thus prevent an increase in greenhouse gas concentrations in the atmosphere.

From their current results, numerous new questions arise for the geologists Susan Mau and Gerhard Bohrmann: What is the precise course of the actual fracture zone? What is the character of the substratum? Where are the gas reservoirs located? And: What is the age of the escaping gas? In any case, a connection between the large number of gas seeps and human-produced warming of the oceans has not been confirmed.

Because the expeditions off the coast by Mau and her colleagues were carried out in the summer, it is not certain what happens during other colder and stormier seasons. “Our results cry out for long-term studies of the seeps,” Mau emphasizes. “We have to strive to learn the reason for high methane gas concentrations that have occurred repeatedly throughout the Earth’s history. The goal is to observe the seepage sites to find out what happens over the course of the year. Only then will it be possible to draw accurate conclusions – including, for example, whether gas emissions at these depths and at this temperate zone are climate relevant.”

Dr. Susan Mau
Telephone: +49 (0) 421-21865059

Original publication:
Susan Mau, Miriam Römer, Martha E. Torres, Ingeburg Bussmann, Thomas Pape, Ellen Damm, Patrizia Geprägs, Paul Wintersteller, Chieh-Wei Hsu, Markus Loher und Gerhard Bohrmann: Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden. Sci. Rep. 7, 42997; doi: 10.1038/srep42997 (2017)

Further information / Photo material:
Ulrike Prange
Telephone: 0421 218 65540

Weitere Informationen:

Ulrike Prange | idw - Informationsdienst Wissenschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>