Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key leukemia defense mechanism discovered by VCU Massey Cancer Center

01.10.2010
Virginia Commonwealth University Massey Cancer Center researcher Steven Grant, M.D., and a team of VCU Massey researchers have uncovered the mechanism by which leukemia cells trigger a protective response when exposed to a class of cancer-killing agents known as histone deacetylase inhibitors (HDACIs). The findings, published in the Journal of Biological Chemistry, could lead to more effective treatments in patients with leukemia and other cancers of the blood.

"Our findings provide new insights into the ways such cancer cells develop resistance to and survive treatment," says Grant, associate director for translational research and professor of medicine. "This knowledge will now allow us to focus our efforts on strategies designed to prevent these self-protective responses, potentially rendering the cancer cell incapable of defense and increasing the effectiveness of therapy."

The discovery centers on modification of a protein known as NEMO. Researchers have known for some time that HDACIs trigger a protective response in leukemia cells by activating a survival signaling pathway known as NF-êB, which limits the ability of HDACIs to initiate a cancer cell suicide program known as apoptosis. However, it was previously thought this process occurred through activation of receptors residing on the cancer cell surface. What VCU Massey researchers discovered was that HDACIs initially induce DNA damage within the cell nucleus, leading to modification of the NEMO protein, which then triggers the cytoprotective NF-êB pathway. By disrupting modifications of the NEMO protein, NF-êB activation can be prevented, and as a consequence, the cancer-killing capacity of HDACIs increases dramatically.

HDACIs represent an approved form of treatment for certain forms of lymphoma, and VCU Massey Cancer Center has been working for over seven years to develop strategies designed to improve their effectiveness in leukemia and other blood cancers. Grant's team is now focusing on ways to capitalize on this discovery by designing strategies that interrupt NEMO modifications through the use of pharmacologic agents and other means.

"Our goal is to move these findings from the laboratory to the bedside as quickly as we possibly can. There are currently several drugs in early stages of development that hold promise in disrupting the NEMO-related NF-êB pathway, but further research defining their safety and effectiveness will be required before we can incorporate them into new therapies," says Grant.

Grant's research team included Roberto Rosato, Ph.D., of the Department of Medicine at Virginia Commonwealth University; Paul Dent, Ph.D., Universal Professor for Signal Transduction at VCU Massey Cancer Center and vice chair of the Department of Neurosurgery at Virginia Commonwealth University; and Paul Fisher, M.Ph., Ph.D., Thelma Newmeyer Corman Endowed Chair in Cancer Research at VCU Massey Cancer Center, department head of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers a wide range of clinical trials throughout Virginia, oftentimes the most trials in the state, and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at www.massey.vcu.edu or call 877-4-MASSEY for more information.

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>