Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interactive size control of catalyst nanoparticles

07.12.2018

5, 10, or maybe 15? How many nanometers should nanoparticles of a catalyst be to optimize the course of the reaction? Researchers usually look for the answer by laborious, repetitive tests.

At the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, a qualitatively new technique was developed to improve the process of such optimization in microfluidic systems.


Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw have developed an interactive method to modify the size of the catalyst nanoparticles during the flow in microfluidic devices.

Credit: IPC PAS, Grzegorz Krzyzewski, courtesy of kolorado.com.pl


In microfluidic devices, the size of the catalyst nanoparticles can be modified interactively.

Credit: IPC PAS, Grzegorz Krzyzewski

The size of the catalyst nanoparticles can now be changed interactively, during a continuous flow through the catalyst bed.

The performance of metal-carrier catalysts often depends on the size of metal nanoparticles. Usually, their size is determined over many consecutive, laborious tests. The method is not flexible enough: once reactions have started, nothing can be done with the catalyst.

At the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, in the group of Dr. Jacinto Sa, a new technique was developed that allows for optimization of chemical reactions during the continuous microfluidic flow through the catalyst bed, and thus literally "on the fly".

This was achieved through interactive control of the size of the catalyst nanoparticles. Due to its simplicity and efficiency, this innovative technique should soon be used in the research on the new catalysts for the pharmaceutical and perfumery industries, among others.

"Flow catalysis is becoming more and more popular because it leads to the intensification of processes important for the industry. Our technique is the next step in this direction: we reduce the time needed to determine the sizes of catalyst nanoparticles.

That means we can faster optimize the chemical reactions and even interactively change their course. An important argument here is also the fact that the entire process is carried out within a small device, so we reduce costs of additional equipment," says Dr. Sa.

Scientists from the IPC PAS demonstrated their achievement with a system based on a commercially available flow microreactor, equipped with a replaceable cartridge with an appropriately designed metal catalyst.

By electrolysis of water, the selected microreactor could supply hydrogen, necessary for the hydrogenation of chemical compounds in the flowing liquid, to the catalyst bed. The reaction medium was a solution of citral, an organic aldehyde compound with a lemon scent.

The nickel catalyst NiTSNH2 used in the experiment, in the form of a fine black powder, was previously developed at the IPC PAS. It consists of grains of polymeric resin covered with nickel nanoparticles. The grain size is approx. 130 micrometers and the nanoparticles of the catalyst are initially 3-4 nanometers.

"At the core of our achievement is to show how to modify the morphology of catalyst nanoparticles in a sequence with a chemical reaction. After each change in the size of the nanoparticles, we get immediate information about the effect of this modification on the catalyst activity.

Therefore, it is easy to assess which nanoparticles are optimal for a given chemical reaction," explains PhD student Damian Gizinski (IPC PAS).

In the system described in the journal ChemCatChem, the researchers increased the size of the catalyst nanoparticles to 5, 9 and 12 nm in a controlled manner. The growth effect was achieved by flushing the catalyst bed with an alcohol solution containing nickel ions.

Within the bed, they were deposited on the existing nanoparticles and reduced under the influence of hydrogen. The final size of the nanoparticles depends here on the exposure time to the solution with Ni2+ ions.

In the reaction with citral, the best catalytic performances were attained with 9 nm nanoparticles.

The researchers also observed that up to 9 nm the growth of nanoparticles favored the redirection of the reaction towards citronellal production, while above this value the pathway to the citronellol was preferred (differences resulted from the fact that smaller nanoparticles favored selective hydrogenation of unsaturated bond C=C, while larger ones activated both the bond C=C and the carbonyl bond C=O).

These two compounds have slightly different properties: citronellal is used to repel insects, especially mosquitoes, and as an antifungal agent; citronellol not only repels insects but also attracts mites, it is also used to produce perfumes.

For potential applications of the new technique, it is important that after the modification, the catalysts were stable at least five hours in a continuous flow of the reaction solution, both in respect to its activity and selectivity.

###

Research on the interactive modification of catalysts was financed from the OPUS grant from the Polish National Science Center.

The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialize specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

Media Contact

Dr. Jacinto Sa
jsa@ichf.edu.pl
48-223-433-320

http://www.ichf.edu.pl 

Dr. Jacinto Sa | EurekAlert!
Further information:
http://dx.doi.org/10.1002/cctc.201800581

Further reports about: IPC Nanoparticles catalyst chemical reaction hydrogenation microfluidic

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>