Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intensification of Land Use Leads to the Same Species Everywhere

01.12.2016

In places where humans use grasslands more intensively, it is not only the species diversity which decreases — the landscape also becomes more monotonous, and ultimately only the same species remain everywhere. This results in nature no longer being able to provide its ‘services’, which range from soil formation for food production to pest control. Led by the Technical University of Munich (TUM), 300 scientists studied the consequences of land-use intensification across different species groups at the landscape level for the very first time.

Normally, every meadow is different, and different species are able to find a suitable habitat somewhere. Intensified human land use leads to a smaller number of distinct plant communities on grasslands, which can therefore sustain fewer and fewer species: This is the catalyst for the increasing loss of species.


The common restharrow or Ononis repens is a host plant for the insect Macrotylus paykulli, which feeds on its sap.

(Photo: Ekkehard Wachmann)

In previous studies, only individual groups of species, such as birds, were studied within a particular habitat, and only over a specified area. But could the local loss of species not have a much greater effect if it were to be studied on a larger spatial scale and viewed in the context of the full diversity of life — from single-celled organisms to vertebrates?

For a study published in “Nature”, scientists analyzed and evaluated a unique data set with exactly this question in mind. For the very first time, it provided statistical evidence that intensified use led to all grasslands becoming homogeneous and only being able to provide habitats for a few species, and this proved to be the case across regions.

“The data comes from the Biodiversity Exploratories, which are funded by the German Research Foundation (DFG), and were collected from 150 grassland areas starting from 2008,” according to Professor Wolfgang Weisser from Terrestrial Ecology Research Group at TUM, who is also one of the founders of this focus project. “These are probably the most comprehensiveecological field research sites in Europe,” says Weisser.

4,000 species evaluated for the study

The research areas, whose data was used in the study, include the UNESCO Biosphere Reserve Swabian Alb, the Hainich National Park and its surroundings, and the Biosphere Reserve Schorfheide-Chorin. All three regions differ in terms of climate, geology, and topography, but are cultivated by farmers in a manner typical for Europe. More than 4,000 species were analyzed using an innovative statistical procedure. This new method allows for nonlinear effects on the the dissimilarity of species communities between grassland areas to be tracked along a continuous land-use gradient (cutting of grass, fertilizing, and grazing).

Data along the food chain ranged from single-celled soil organisms to birds

What was unique in this case was that data from organisms in the ground such as from bacteria, fungi, and millipedes were also included. “For the first time, we investigated all groups of species along the food chain on grasslands with different forms of land use in a variety of regions,” said Dr Martin M. Gossner, lead author of the study, who is now working at the Swiss Federal Research Institute WSL. The species were subdivided into twelve groups according to their position on the food chain, and whether they live above- or belowground. For example, one group of aboveground species is that of the primary producers, which mainly comprises plants. Other groups include herbivores and plant pollinators, as well as their predators.

Even moderate land use results in a decline in species

The findings showed that it did not matter whether grassland areas were used moderately or intensively by humans. For example, a distinction was made between areas where grass was cut twice or four times a year. “According to our observations, the homogenization of species does not progress proportionally to the intensity of use. Instead, even a moderate management of grassland results in cross-regional communities being reduced to the same, less demanding all-rounders,” said Gossner — “a further increase in the intensity of use simply doesn’t have a comparably large effect.”

An example for a high-maintenance species: The common restharrow (Ononis repens, pictured) is a host plant for the insect Macrotylus paykulli, which feeds on its sap, or occasionally also on insects which get stuck to the glandular hairs of Ononis repens. If the common restharrow becomes increasingly rare due to the cultivation of common grass species with a high fodder value, Macrotylus paykulli no longer has a suitable habitat, and ultimately both go extinct. This means that even a slight intensification of the use of meadows and pastures makes it impossible for many species of flora and fauna such as the common restharrow and Macrotylus paykulli to survive, resulting in only those species remaining which do not have specific requirements regarding host plants or abiotic environmental conditions. This effect is called ‘biotic homogenization’. “More intensive mowing is the main cause of biotic homogenization,” said Professor Eric Allan from the University of Bern, the senior author of the study.

“What is new here is the finding that the homogenization of species takes place across landscapes, thereby reducing the diversity of species at a regional and national level,” said Gossner — “which is probably a more significant consequence of the intensification of land use than the local loss of species alone.”

Less interaction between species changes the ecosystem

Hence, grassland areas that are cultivated extensively by humans are essential for protecting species diversity because the decline in species diversity also results in less interactions between individual species: “Interactions between plants and their consumers are increasingly weakened by more intensive agricultural usage,” says Gossner — “which ultimately causes processes in the ecosystem to shift and change.”

It is only when as many species as possible are able to find the unique habitats they require across large areas that ‘ecosystem services’, which improve human well-being, can remain intact. Because ‘nature’s services’ help increase food production by improving soil formation, for example, but they also help keep pests in check.

Publication:
Martin M. Gossner et al: Land-use intensification causes multitrophic homogenization of grassland communities, Nature 2016. DOI: doi:10.1038/nature20575

Download highresolution pictures: https://mediatum.ub.tum.de/1339261?id=1339261

Contact:
Dr Martin M. Gossner
Technical University of Munich
Chair for Terrestrial Ecology
Via: Swiss Federal Research Institute WSL
Phone: +41 44 739 2588
martin.gossner@tum.de

Professor Dr Wolfgang W. Weisser
Technical University of Munich
Terrestrial Ecology Research Group
Tel.: +49 8161 71-3496
wolfgang.weisser@tum.de
http://www.toek.wzw.tum.de/

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/33571/
Download highresolution pictures: https://mediatum.ub.tum.de/1339261?id=1339261

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Ecosystem ecology food chain grassland species diversity

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>