Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into possible origins of immunological memory

03.06.2019

Natural killer cells are part of the innate immune system. Their role is to detect virus-infected cells and destroy them. When an infection is detected, a small subset of the most effective killer cells is identified and selectively expanded – as a team from the Technical University of Munich (TUM) has now been able to show for the first time. This could represent a simple and evolutionary ancient form of immunological memory.

More than half of the global population is infected with cytomegalovirus (CMV), which remains in the body for life. Normally, these infections do not produce any symptoms. Together with T cells, natural killer cells (NKs) effectively keep the virus in check, although it can cause serious illnesses in people with a weakened immune system.


The team of authors of the study (from left to right): Ludwig Pachmayr, Dr. Veit Buchholz, Dr. Simon Grassmann

Veit Buchholz / TUM

NKs possess surface molecules that identify CMV-infected cells, such as the receptor Ly49H in mice. It is known that NKs equipped with this receptor (Ly49H-NKs) are particularly effective at destroying CMV-infected cells.

Quantity of receptors determines effectiveness

Dr. Veit Buchholz, research group leader at TUM’s Institute of Medical Microbiology, Immunology and Hygiene, and his colleague Dr. Simon Grassmann set out to determine what exactly happens to these Ly49H-NKs during a CMV infection. To do this, they tracked immune responses derived from individual Ly49H-NKs in CMV-infected mice.

They found that replication of individual Ly49H NKs was extremely varied. This variation correlated with distinct surface expression levels of Ly49H itself. Cells with higher Ly49H expression expanded more and were thus able to combat CMV more effectively.

This trait seemed to be heritable, with the descendants of an NK resembling their “parent” cell in terms of Ly49H receptor levels. Inheritance of quantitative traits such as this had not previously been observed in NKs.

Hint for “ancient” immunological memory

“The really interesting aspect was that, even after the peak of the immune response, killer cells expressing high amounts of Ly49H remained detectable at elevated numbers,” reports Grassmann. He goes on to explain that this is an important indication of the existence of a simple immunological memory based on NKs.

Immunological memory can only work if there is a selection mechanism available that multiplies and then preserves the most effective cells for fighting an infection. “We show that in NKs – which are part of the evolutionary ancient, innate immune system – the quantity of receptor alone is a sufficient criterion to drive selection at a simple level,” outlines Buchholz. This finding could also be significant for humans, since human NKs possess an equivalent receptor, which plays an important role during CMV infection.

Fluorescent protein barcode

The appropriate tool to track individual NKs in living organisms was developed by Grassmann, together with medical student Ludwig Pachmayr, within the context of TUM's "Translational Medicine" doctoral program: A barcode consisting of fluorescent proteins enabled the researchers for the first time to differentiate and track up to 30 individual NKs and their descendants.

Next, the researchers are keen to find out how NKs transmit the information about receptor quantity to their descendants. NKs are considered a possible alternative to T cells for immunotherapy of infections and tumor diseases.

Wissenschaftliche Ansprechpartner:

Dr. Veit Buchholz
Institute of Medical Microbiology, Immunology and Hygiene
Klinikum rechts der Isar (TUM university hospital)
Phone: +49 89 4140-4156
veit.buchholz@tum.de

Originalpublikation:

Simon Grassmann*, Ludwig O. Pachmayr*, Justin Leube, Lorenz Mihatsch, Immanuel Andrae, Sophie Flommersfeld, Jennifer Oduro, Luka Cicin-Sain, Matthias Schiemann, Michael Flossdorf and Veit R. Buchholz: Distinct surface expression of activating receptor Ly49H drives differential expansion of NK cell clones upon murine cytomegalovirus infection, Immunity, June 18, 2019, DOI: 10.1016/j.immuni.2019.04.015 *These authors contributed equally
https://www.cell.com/immunity/pdfExtended/S1074-7613(19)30195-5

Weitere Informationen:

https://mediatum.ub.tum.de/1488635 - High resolution images
http://www.tum.de/nc/en/about-tum/news/press-releases/details/article/35474/ - This text on the web
https://www.mikrobio.med.tum.de/node/122 - Research group led by Dr. Veit Buchholz

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Ceramic technologies for highly efficient power-to-X processes
10.10.2019 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Growing and moving
10.10.2019 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>