Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inbred sperm fertilize fewer eggs according to University of East Anglia research

16.06.2010
Inbred male sperm have been found to fertilise fewer eggs when in competition with non-inbred males according to a new study by the University of East Anglia.

Research into the breeding habits of the red flour beetle, published today in Proceedings of the Royal Society B, shows that the reduced fitness of inbred beetles, known as 'inbreeding depression', reveals itself in competitive scenarios.

Inbreeding is a potentially important problem in declining species across the world, and conserving genetic variation is now recognised as a priority by the International Union for Conservation of Nature. The new research is potentially vital for the successful implementation of recovery programmes of inbred species.

When populations deplete or fragment, relatives can be forced into reproduction, often leading to inbreeding depression.

Led by Dr Matt Gage, the new research into the promiscuous red flour beetle (Tribolium castaneum) measured how male reproduction responded to forced inbreeding.

After mating brothers with sisters for eight generations, the research found no changes in male fertility or mating behaviour.

However, inbred male sperm fertilized fewer eggs when in competition with another non-inbred male, and sperm became more variable in size.

Dr Gage said: "The experiment was designed to make comparisons with non-inbred control lines. Using multiple inbred lines, we measured the effect s of inbreeding on pre and post-mating success, in the absence and presence of male-male competition."

The results showed no differences between inbred and non-inbred males in terms of mating success, latency, duration, the number of mounts or persistency in a non-competitive setting.

However inbred males suffered significantly reduced sperm competitiveness, fathering an average of 15 per cent fewer offspring than non-inbred males across 330 sperm competition comparisons.

Dr Gage said: "It seems that inbreeding depression in sperm competitiveness was caused by a decrease in either sperm quantity or quality that is critical for relative competitiveness, but still allows full male fertilization success to be achieved under benign, competition-free conditions.

"We have shown that male fertility and mating competence are not affected by inbreeding and that any decline in sperm quality under inbreeding is only detectable when sperm competition is invoked.

"One limitation to this study is that the ancestral laboratory stock we have used is likely to carry relatively reduced genetic diversity. Also insect sperm do not generally manifest cellular abnormalities akin to those commonly found in more complex mammalian sperm," he added.

The next stage of the research will explore ways that female beetles use multiple mating to generate sperm competition and thereby avoid inbreeding depression of their own fertility.

The research is part of a three-year £400,000 project funded by the Natural Environmental Research Council (NERC). The overall results will help managers of conservation and captive breeding projects recognise when inbreeding is a problem, how it progresses and how best to manage or reverse it.

Lisa Horton | EurekAlert!
Further information:
http://www.uea.ac.uk

Further reports about: Depression East genetic variation male fertility non-inbred males

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>