Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to generate a brain of correct size and composition

10.05.2019

During brain development, stem cells generate neurons of different type and function at distinct points in time | IST Austria researchers contribute key experiment to identify essential protein controlling stem cell behavior

To build the neocortex, a brain area involved in higher cognitive functions, stem cells produce billions of neurons of various types. In a Science study, neuroscientists from Switzerland, Belgium, and the Institute of Science and Technology Austria (IST Austria) have now shown that, over time, the neocortical stem cells go through various maturation states, each of them leading to a distinct neuron type. Production of the correct neuron type is bound to a specific protein complex.


Normal cortical development with PRC2 (top) vs. irregular cortical development without PRC2 (bottom). Colors stand for different maturation stages of cortical stem cells and different types of neurons

IST Austria/Hippenmeyer Group


Confocal image of the embryonic mouse cortex. Green: stem cells; red: intermediate progenitor stage; white: final neurons; blue: nuclei of all cells.

IST Austria/Hippenmeyer Group

With its deep grooves and ridges, the neocortex has coined our notion of the human brain. Only a few millimeters thick, this outer cerebral layer contains way over 15 billion neurons and processes information in order for us to consciously experience and perceive the world.

Obviously, if anything goes wrong during neocortex development in the embryo, serious malfunctions associated with neurodevelopmental and psychiatric disorders including autism or schizophrenia may occur.

However, how the cerebral cortex is built from neural stem cells during development is not fully understood. Together with the IST Austria research group of Professor Simon Hippenmeyer, researchers around Denis Jabaudon from the University of Geneva, Switzerland, and Laurent Nguyen from the University of Liège, Belgium, have now made a major step towards understanding how cortical stem cells manage to generate the huge number of neurons of various type and function that make up for adult neuronal diversity.

Time as an essential aspect of neuron identity

The new study presents evidence that developing neural stem cells are equipped with specific gene expression (transcriptional) programs at different points in time. While the stem cells progress sequentially through distinct stages, they pass these transcriptional “fingerprints” on to their daughter cells, i.e., the neurons they produce.

Strikingly, the stem cells appear to have different properties and gene expression at different stages during neocortical development: At early stages, stem cells tend to be equipped with programs regulating primarily internal cellular processes such as cell-cycle control. In contrast, during later stages, stem cells hold gene expression programs that increasingly require external signals and thus environmental interaction.

A protein complex bearing great responsibility

The researchers suspected that specific regulatory proteins could be involved in the control of the time-dependent activation of distinct gene expression programs. They identified a protein complex, the so-called Polycomb Repressive Complex 2 (PRC2) to be highly expressed only in early-stage stem cells, but not in late-stage ones.

The question, whether PRC2 does indeed regulate temporal maturation of stem cells could only be answered in a collaboration of the Swiss and researchers with Simon Hippenmeyer and postdoc Nicole Amberg from IST Austria. By using mouse genetic approaches the IST Austria researchers succeeded in eliminating all PRC2 activity in cortical stem cells during development, i.e., at the time when distinct neuron types are being produced—and the results proved their hypothesis right.

Protein malfunction with dramatic consequences

The PRC2 inactivation had drastic consequences in a way that stem cells were unable to follow their normal path of maturation. In the absence of PRC2, stem cells seemed to mature too fast and thus produced wrong types of neurons during false time windows. Even more dramatic, the overall number of neurons produced was also drastically reduced.

This resulted in a small cortex, also known as microcephaly, with an incorrect neuronal cell type composition. Nicole Amberg, who was recently awarded an FWF Hertha-Firnberg Fellowship: “The results illustrate how sensitive brain development is. We now have a clearer picture of how neural stem cells produce the right type and number of neurons during cortical development, which could help to better understand the underlying mechanisms of human brain malformation and neurodevelopmental disorders in general.”

About IST Austria

The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

www.ist.ac.at

Funding information

The research work at IST Austria for this study was supported by IST Austria institutional funds and the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No 725780 LinPro). Nicole Amberg is further supported by the FWF Hertha Firnberg Program (grant No T 1031-BBL).

Animal welfare

Understanding the development of the neocortex is only possible by studying the brains of animals. Currently, no other methods are available to serve as alternatives. In this study, mice were used as model organisms. The animals were raised, kept and treated according to the strict regulations of Austrian law.

Wissenschaftliche Ansprechpartner:

Dr. Nicole Amberg
nicole.amberg@ist.ac.at

Originalpublikation:

L. Telley, G. Agirman, J. Prados, N. Amberg, S. Fièvre, P. Oberst, G. Bartolini, I. Vitali, C. Cadilhac, S. Hippenmeyer, L. Nguyen, A. Dayer & D. Jaboudon. 2019. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science. DOI: 10.1126/science.aav2522

Weitere Informationen:

https://ist.ac.at/en/research/life-sciences/hippenmeyer-group/ Research group of Prof Hippenmeyer

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft
Further information:
https://ist.ac.at/de/

Further reports about: cortical human brain neural stem cells neurons protein complex stem cells

More articles from Life Sciences:

nachricht New type of highly sensitive vision discovered in deep-sea fish
10.05.2019 | Universität Basel

nachricht How the cytoplasm separates from the yolk
10.05.2019 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers take a step towards light-based, brain-like computing chip

Researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists produced a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses. The network is able to “learn” information and use this as a basis for computing and recognizing patterns. As the system functions solely with light and not with electrons, it can process data many times faster than traditional systems. The study is published in “Nature”.

A technology that functions like a brain? In these times of artificial intelligence, this no longer seems so far-fetched - for example, when a mobile phone can...

Im Focus: First demonstration of antimatter wave interferometry

An international collaboration with participation of the University of Bern has demonstrated for the first time in an interference experiment that antimatter particles also behave as waves besides having particle properties. This success paves the way to a new field of investigations of antimatter.

Matter waves constitute a crucial feature of quantum mechanics, where particles have wave properties in addition to particle characteristics. This...

Im Focus: Quantum sensor for photons

A photodetector converts light into an electrical signal, causing the light to be lost. Researchers led by Tracy Northup at the University of Innsbruck have now built a quantum sensor that can measure light particles non-destructively. It can be used to further investigate the quantum properties of light.

Physicist Tracy Northup is currently researching the development of quantum internet at the University of Innsbruck. The American citizen builds interfaces...

Im Focus: RadarGlass: Functional thin-film structures for integrated radar sensors

It is only an inconspicuous piece of paper, but it is an important milestone for autonomous driving: At the end of 2018 the three partners from the joint research project RadarGlass applied for a patent for an innovative radar system. The Fraunhofer Institute for Laser Technology ILT from Aachen, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP from Dresden and the Institute of High Frequency Technology IHF of RWTH Aachen University have developed a coating process chain that enables radar sensors to be integrated in car headlights. After almost two years in development they have manufactured a working prototype.

Completely autonomous vehicles pose an enormous challenge for sensor technology because, in principle, the supporting system must hear, see and feel better...

Im Focus: Novel method developed by HKBU scholars could help produce purer, safer drugs

Physics and Chemistry scholars from Hong Kong Baptist University (HKBU) have invented a new method which could speed up the drug discovery process and lead to the production of higher quality medicinal drugs which are purer and have no side effects. The technique, which is a world-first breakthrough, uses a specific nanomaterial layer to detect the target molecules in pharmaceuticals and pesticides in just five minutes.

The new HKBU invention can be applied to the drug discovery process, as well as the production and quality control stages of pharmaceutical manufacturing. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Computing faster with quasi-particles

10.05.2019 | Physics and Astronomy

Solar-powered hydrogen fuels a step closer

09.05.2019 | Materials Sciences

Physicists propose perfect material for lasers

09.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>