Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to construct a protein factory

19.09.2019

The complexity of molecular structures in the cell is amazing. Having achieved great success in elucidating these structures in recent years, biologists are now taking on the next challenge: to find out more about how they are constructed. A joint research project between two groups from the University of Bern and ETH Zurich now provides insight into a very unusual construction process in the unicellular parasite Trypanosoma brucei.

Cells consist of a multitude of molecular structures, some of them exhibiting a staggering complexity. Ribosomes, the protein factories of the cell, belong to the biggest and most sophisticated complexes and are made up of RNA as well as a large number of proteins.


Model of the Mitoribosomal small subunit assembly in Trypanosoma brucei.

© NCCR RNA & Disease


Dr. Moritz Niemann and Prof. Dr. André Schneider, Department of Chemistry and Biochemistry (DCB), University of Bern.

© NCCR RNA & Disease

They exist in every living being and are considered as one of the cellular machines that has changed the least through all stages of the evolution. But there are exceptions: In mitochondria, cellular organelles that serve as power plants, ribosomes look considerably different.

An extensive machinery

Scientists are not only interested in the structure and function of such ribosomes, but also in the “construction process“ - how do cells manage the assembly of these complex structures? And how do these construction methods differ, for different structures? It is clear that an extensive cellular machinery is needed to guarantee for a smooth assembly of all the building bricks.

This cellular machinery responsible for ribosome assembly in mitochondria has not been described yet. Now, researchers from the André Schneider group of the University of Bern and the Nenad Ban group of ETH Zurich, investigated the mitochondrial ribosome assembly process using the unicellular parasite Trypanosoma brucei.

They were able to follow the construction process and to identify the associated cellular machinery dedicated to assemble these mitoribosomes. Since T. brucei causes hardly treatable diseases including sleeping sickness, the results could lead to new therapies.

The project was made possible by the National Center of Competence in Research "RNA & Disease", which studies the role of RNA in disease mechanisms. The findings have now been published in “Science”.

Unknown elements in the “construction business”
The parasite Trypanosoma brucei was used as a model system since its mitoribosomes are particularly complex and, therefore, likely to require many assembly steps. The researchers could follow all these steps in detail.

“We have found fascinating differences”, says Moritz Niemann from the Department of Chemistry and Biochemistry of the University of Bern, co-author. In mitochondrial ribosomes RNA can be considered as the steel in reinforced concrete, whereas in other ribosomes it can be considered to play key structural role as in iron-based structures such as the Eiffel Tower.

Analysis showed that the assembly of mitoribosomes in T. brucei proceeds through the formation of several assembly intermediates. It also involves a large number of proteins that form a huge adaptive scaffolding around the emerging mitoribosome that is not present in the completed structure. Martin Saurer from the Department of Biology of ETH Zurich and first author, says that many of these proteins were unknown in the “construction business”.

“Cryo-electron microscopy does not only allow us to visualize known complexes but also to discover and describe an entire cellular process: the construction site and the machinery involved in assembling mitochondrial ribosomes,” he adds. Moritz Niemann was especially baffled by the enormous effort the cell is putting into this: “Up to a quarter of all proteins in the mitochondrion are components of the mitoribosomes or are required to build them.”

Better understanding leads to new therapies
Since several of the assembly proteins have look-alikes in other organisms, the researchers believe that the obtained insights provide general information for better understanding ribosomal maturation in all organisms. And because all these proteins are essential for the functioning of the cell, these findings could be useful for developing therapies against T. brucei and related parasites that cause many devastating diseases in humans and animals.

«RNA & Disease – The Role of RNA Biology in Disease Mechanisms»

The NCCR «RNA & Disease – The Role of RNA Biology in Disease Mechanisms» studies a class of molecules that has long been neglected: RNA (ribonucleic acid) is pivotal for many vital processes and much more complex than initially assumed. For instance, RNA defines the conditions, in a given cell, under which a given gene is or is not activated.

If any part of this process of genetic regulation breaks down or does not run smoothly, this can cause heart disease, cancer, brain disease and metabolic disorders.The NCCR brings together Swiss research groups studying different aspects of RNA biology. By researching which regulatory mechanisms are dysregulated in disease, the NCCR discovers new therapeutical targets.

Leading institution is the University of Bern, with the ETH Zurich co-leading. National Centers of Compentence in Research are a research instrument of the Swiss National Science Foundation (SNSF).
https://nccr-rna-and-disease.ch/

Wissenschaftliche Ansprechpartner:

Dr. Moritz Niemann, Department of Chemistry and Biochemistry (DCB), University of Bern
Phone +41 31 631 42 10 / moritz.niemann@dcb.unibe.ch

Prof. Dr. André Schneider, Department of Chemistry and Biochemistry (DCB), University of Bern
Tel. +41 31 631 42 53 / andre.schneider@dcb.unibe.ch

Originalpublikation:

Martin Saurer, David J. F. Ramrath, Moritz Niemann et al.: Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery, Science, 13 Sep 2019:
Vol. 365, Issue 6458, pp. 1144-1149, DOI: 10.1126/science.aaw5570

Weitere Informationen:

https://www.unibe.ch/news/media_news/media_relations_e/media_releases/2019/medie...

Nathalie Matter | idw - Informationsdienst Wissenschaft

Further reports about: Biochemistry RNA Trypanosoma brucei cellular machinery ribosomes

More articles from Life Sciences:

nachricht Family of crop viruses revealed at high resolution for the first time
15.10.2019 | John Innes Centre

nachricht Receptor complexes on the assembly line
15.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New material captures carbon dioxide

15.10.2019 | Materials Sciences

Drugs for better long-term treatment of poorly controlled asthma discovered

15.10.2019 | Interdisciplinary Research

Family of crop viruses revealed at high resolution for the first time

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>