Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV Spreads Through Direct Cell-To-Cell Contact

25.07.2019

The spread of pathogens like the HI virus is often studied in a test tube, i.e. in two-dimensional cell cultures, even though it hardly reflects the much more complex conditions in the human body. Using novel cell culture systems, quantitative image analysis, and computer simulations, an interdisciplinary team of scientists from Heidelberg University has now explored how HIV spreads in three-dimensional tissue-like environments.

HIV Spreads Through Direct Cell-To-Cell Contact
Researchers investigate infection dynamics in tissue-like three-dimensional cell cultures


Microscopic recording and computer model of the interaction between infected cells (green) and non-infected cells (red) in collagen structures (grey).

Source: Oliver Fackler / Frederik Graw

The spread of pathogens like the human immunodeficiency virus (HIV) is often studied in a test tube, i.e. in two-dimensional cell cultures, even though it hardly reflects the much more complex conditions in the human body.

Using innovative cell culture systems, quantitative image analysis, and computer simulations, an interdisciplinary team of scientists from Heidelberg University has now explored how HIV spreads in three-dimensional tissue-like environments. The researchers’ results show that the tissue structure forces the virus to spread through direct cell-to-cell contact.

Despite over 30 years of research, many key aspects of how HIV, the causative agent of the acquired immune deficiency syndrome (AIDS) spreads are still not understood.

One of these unresolved questions concerns the interactions between the virus with the environment in the human body. Traditionally it has been assumed that infected cells release viral particles which then diffuse and eventually infect other cells.

But it is also possible that viral particles are directly transferred from one infected cell to the next through close contact. Until now it was unknown which of these modes of transmission prevailed in tissue.

“Studies on HIV replication in the lab are mostly conducted in simple cell culture experiments in plastic dishes that do not reflect the complex architecture and heterogeneity of tissue”, explains study director Prof. Dr Oliver Fackler of the Center for Integrative Infectious Disease Research (CIID) at Heidelberg University Hospital.

In their approach, the Heidelberg researchers took into account that the so-called CD4 T helper cells, the preferred cell type infected by HIV, are highly motile in their physiological environment. They used a novel cell culture system, in which a three-dimensional scaffold was generated with the help of collagen.

This allowed for maintaining the cells’ mobility and monitoring primary CD4 T cells infected with HIV-1 in a tissue-like environment over the course of several weeks. Using this innovative approach, the researchers measured a number of factors that characterise cell motility, virus replication, and the gradual loss of CD4 T helper cells.

“This yielded a very complex set of data that was impossible to interpret without the help from scientists of other disciplines”, explains Dr Andrea Imle, who worked on the project during her PhD at the CIID.

In analysing the data, the scientists who conducted the experiments collaborated with colleagues from the fields of image processing, theoretical biophysics and mathematical modelling. Together they were able to characterise the complex behaviour of cells and viruses and simulate it on the computer.

This made it possible to make important predictions on the key processes that determine HIV-1 spread in these 3D cultures, which were confirmed by subsequent experimentation. “Our interdisciplinary study is a good example of how iterative cycles of experimentation and simulation can help to quantitatively analyse a complex biological process”, states Prof. Dr Ulrich Schwarz of the Institute for Theoretical Physics at Heidelberg University.

The data analysis revealed that the 3D environment of the cell culture system suppresses infection with a cell-free virus while simultaneously promoting direct virus transmission from cell to cell. “Our models allowed us to integrate short single-cell microscopy films with long-term cell population measurements and thereby to estimate the minimal time span required for cell-to-cell contacts to transmit infection”, explains Dr Frederik Graw of the BioQuant Centre of Heidelberg University. The researchers hope that these findings will eventually lead to new therapeutic approaches in the treatment of HIV.

The research was conducted within the Collaborative Research Centre “Integrative Analysis of Pathogen Replication and Spread” (CRC 1129) funded by the German Research Foundation and supported by the Center for Modelling and Simulation in the Biosciences (BIOMS) of Heidelberg University. The results were published in “Nature Communications”.

Contact:
Heidelberg University
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Wissenschaftliche Ansprechpartner:

Prof. Dr Oliver Fackler
Center for Integrative Infectious Disease Research (CIID)
Phone +49 6221 56-1322
oliver.fackler@med.uni-heidelberg.de

Dr Frederik Graw
BioQuant Center
Phone +49 6221 54-51309
frederik.graw@bioquant.uni-heidelberg.de

Prof. Dr Ulrich Schwarz
Institute for Theoretical Physics
Phone +49 6221 54-9399
schwarz@thphys.uni-heidelberg.de

Originalpublikation:

A. Imle, P. Kumberger, N.D. Schnellbächer, J. Fehr, P. Carrillo-Bustamante, J. Ales, P. Schmidt, C. Ritter, W.J. Godinez, B. Müller, K. Rohr, F.A. Hamprecht, U.S. Schwarz, F. Graw & O. T. Fackler: Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures. Nature Communications (2019) 10:2144, https://doi.org/10.1038/s41467-019-09879-3

Weitere Informationen:

http://www.sfb1129.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Numbers count in the genetics of moles and melanomas
16.08.2019 | University of Queensland

nachricht Working out why plants get sick
16.08.2019 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>