Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV Spreads Through Direct Cell-To-Cell Contact

25.07.2019

The spread of pathogens like the HI virus is often studied in a test tube, i.e. in two-dimensional cell cultures, even though it hardly reflects the much more complex conditions in the human body. Using novel cell culture systems, quantitative image analysis, and computer simulations, an interdisciplinary team of scientists from Heidelberg University has now explored how HIV spreads in three-dimensional tissue-like environments.

HIV Spreads Through Direct Cell-To-Cell Contact
Researchers investigate infection dynamics in tissue-like three-dimensional cell cultures


Microscopic recording and computer model of the interaction between infected cells (green) and non-infected cells (red) in collagen structures (grey).

Source: Oliver Fackler / Frederik Graw

The spread of pathogens like the human immunodeficiency virus (HIV) is often studied in a test tube, i.e. in two-dimensional cell cultures, even though it hardly reflects the much more complex conditions in the human body.

Using innovative cell culture systems, quantitative image analysis, and computer simulations, an interdisciplinary team of scientists from Heidelberg University has now explored how HIV spreads in three-dimensional tissue-like environments. The researchers’ results show that the tissue structure forces the virus to spread through direct cell-to-cell contact.

Despite over 30 years of research, many key aspects of how HIV, the causative agent of the acquired immune deficiency syndrome (AIDS) spreads are still not understood.

One of these unresolved questions concerns the interactions between the virus with the environment in the human body. Traditionally it has been assumed that infected cells release viral particles which then diffuse and eventually infect other cells.

But it is also possible that viral particles are directly transferred from one infected cell to the next through close contact. Until now it was unknown which of these modes of transmission prevailed in tissue.

“Studies on HIV replication in the lab are mostly conducted in simple cell culture experiments in plastic dishes that do not reflect the complex architecture and heterogeneity of tissue”, explains study director Prof. Dr Oliver Fackler of the Center for Integrative Infectious Disease Research (CIID) at Heidelberg University Hospital.

In their approach, the Heidelberg researchers took into account that the so-called CD4 T helper cells, the preferred cell type infected by HIV, are highly motile in their physiological environment. They used a novel cell culture system, in which a three-dimensional scaffold was generated with the help of collagen.

This allowed for maintaining the cells’ mobility and monitoring primary CD4 T cells infected with HIV-1 in a tissue-like environment over the course of several weeks. Using this innovative approach, the researchers measured a number of factors that characterise cell motility, virus replication, and the gradual loss of CD4 T helper cells.

“This yielded a very complex set of data that was impossible to interpret without the help from scientists of other disciplines”, explains Dr Andrea Imle, who worked on the project during her PhD at the CIID.

In analysing the data, the scientists who conducted the experiments collaborated with colleagues from the fields of image processing, theoretical biophysics and mathematical modelling. Together they were able to characterise the complex behaviour of cells and viruses and simulate it on the computer.

This made it possible to make important predictions on the key processes that determine HIV-1 spread in these 3D cultures, which were confirmed by subsequent experimentation. “Our interdisciplinary study is a good example of how iterative cycles of experimentation and simulation can help to quantitatively analyse a complex biological process”, states Prof. Dr Ulrich Schwarz of the Institute for Theoretical Physics at Heidelberg University.

The data analysis revealed that the 3D environment of the cell culture system suppresses infection with a cell-free virus while simultaneously promoting direct virus transmission from cell to cell. “Our models allowed us to integrate short single-cell microscopy films with long-term cell population measurements and thereby to estimate the minimal time span required for cell-to-cell contacts to transmit infection”, explains Dr Frederik Graw of the BioQuant Centre of Heidelberg University. The researchers hope that these findings will eventually lead to new therapeutic approaches in the treatment of HIV.

The research was conducted within the Collaborative Research Centre “Integrative Analysis of Pathogen Replication and Spread” (CRC 1129) funded by the German Research Foundation and supported by the Center for Modelling and Simulation in the Biosciences (BIOMS) of Heidelberg University. The results were published in “Nature Communications”.

Contact:
Heidelberg University
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Wissenschaftliche Ansprechpartner:

Prof. Dr Oliver Fackler
Center for Integrative Infectious Disease Research (CIID)
Phone +49 6221 56-1322
oliver.fackler@med.uni-heidelberg.de

Dr Frederik Graw
BioQuant Center
Phone +49 6221 54-51309
frederik.graw@bioquant.uni-heidelberg.de

Prof. Dr Ulrich Schwarz
Institute for Theoretical Physics
Phone +49 6221 54-9399
schwarz@thphys.uni-heidelberg.de

Originalpublikation:

A. Imle, P. Kumberger, N.D. Schnellbächer, J. Fehr, P. Carrillo-Bustamante, J. Ales, P. Schmidt, C. Ritter, W.J. Godinez, B. Müller, K. Rohr, F.A. Hamprecht, U.S. Schwarz, F. Graw & O. T. Fackler: Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures. Nature Communications (2019) 10:2144, https://doi.org/10.1038/s41467-019-09879-3

Weitere Informationen:

http://www.sfb1129.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Preserved and fresh – Neutrons show details of the freeze drying process
27.02.2020 | Technische Universität München

nachricht Detect cell changes faster
27.02.2020 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Preserved and fresh – Neutrons show details of the freeze drying process

27.02.2020 | Life Sciences

Underwater Snail-o-Bot gets kick from light

27.02.2020 | Health and Medicine

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>