Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Fluorescent Probes Detect Reactive Oxygen Species

16.12.2008
Researchers have created a new family of fluorescent probes called hydrocyanines that can be used to detect and measure the presence of reactive oxygen species. Reactive oxygen species are highly reactive metabolites of oxygen that have been implicated in a variety of inflammatory diseases, including cancer and atherosclerosis.

“We’ve shown that the hydrocyanines we developed are able to detect the reactive oxygen species, superoxide and the hydroxide radical, in living cells, tissue samples, and for the first time, in vivo,” said Niren Murthy, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Details of the hydrocyanine synthesis process and experimental results showing the ability of the dyes to detect reactive oxygen species in cells, tissues and mouse models were reported on December 8 in the online version of the journal Angewandte Chemie International Edition. This research is supported by the National Institutes of Health and the National Science Foundation.

The researchers have created six hydrocyanine dyes to date – hydro-Cy3, hydro-Cy5, hydro-Cy7, hydro-IR-676, hydro-IR-783 and hydro-ICG – but say that there are potentially 40 probes that could be created. The dyes vary in their ability to detect intracellular or extracellular reactive oxygen species and by their emission wavelength – from 560 to 830 nanometers.

Fluorescing at higher wavelengths allows the hydrocyanine dyes to be used for deep tissue imaging in vivo, a capability that dihydroethidium (DHE), the current “gold standard” for imaging reactive oxygen species, does not have. The dyes also have other advantages over DHE.

“When DHE comes into contact with reactive oxygen species, it oxidizes into ethidium bromide, a common mutagen, which means it’s toxic and can’t be injected inside the body,” explained Murthy. “DHE also auto-oxidizes in the presence of aqueous solutions, which creates high levels of background fluorescence and interferes with reactive oxygen species measurements.”

Hydrocyanines are also simple and quick to synthesize, according to Coulter Department postdoctoral fellow Kousik Kundu. Sodium borohydride is added to commercially available cyanine dyes and the solvent is removed – the one-step process takes less than five minutes.

W. Robert Taylor, a professor in the Coulter Department and Emory’s Division of Cardiology, and Emory postdoctoral fellow Sarah Knight, tested the ability of the dyes to detect reactive oxygen species inside of cells and animals.

For their first experiment, they tested the ability of hydro-Cy3, which has an emission wavelength of 560 nanometers, to detect reactive oxygen species production in the aortic smooth muscle cells of rats. They incubated the cells with hydro-Cy3 and angiotensin II, which is a stimulator of reactive oxygen species that is implicated in the development of atherosclerosis and hypertension.

Results showed that cells incubated with angiotensin II and hydro-Cy3 displayed intense intracellular fluorescence, whereas control cells incubated with hydro-Cy3 and phosphate buffer saline displayed significantly lower fluorescence. When they introduced TEMPOL, a molecule that intercepts the reactive oxygen species so that they cannot interact, the cells treated with angiotensin II and hydro-Cy3 displayed a dramatic decrease in fluorescence.

“This test demonstrated that the cellular fluorescence was due to intracellular reactive oxygen species production,” said Murthy. “What was even more exciting was that we saw that once the hydrocyanine dye was oxidized, it stayed in the cell and the fluorescence was not extinguished by cellular metabolism, which is what happens with DHE.”

The researchers also investigated the ability of hydro-Cy3 to image reactive oxygen species production in live mouse aorta tissue, which exhibit a physiological environment that closely resembles in vivo conditions. Explants were incubated with hydro-Cy3 and either lipopolysaccharide endotoxin (LPS), an inflammatory molecule that binds to aortic cells and causes reactive oxygen species to be produced, or the control saline solution.

Samples treated with hydro-Cy3 and LPS showed fluorescence intensity almost four times greater than explants treated with hydro-Cy3 and saline. Once more, adding TEMPOL to the sample with hydro-Cy3 and LPS decreased the fluorescence to a level comparable to the control saline explants.

After the successful cell culture and tissue experiments, the researchers progressed to in vivo mouse imaging studies. Hydro-Cy7 was selected for the in vivo tests because of its higher emission wavelength of 760 nanometers. LPS-treated mice showed twofold greater fluorescence intensity in the abdominal area than those treated with saline.

“Given their ability to detect reactive oxygen species in living cells, tissue samples and in vivo, we believe these dyes will enhance the ability of researchers to measure reactive oxygen species,” noted Murthy.

The researchers’ ultimate goal, though, is to use the dyes in clinical applications.

“We want to use these hydrocyanine dyes to detect overproduction of reactive oxygen species at an early stage inside the body so that we can identify patients who are more likely to suffer from these inflammatory diseases,” added Murthy.

Technical Contact: Niren Murthy (404-385-5145);
E-mail: (niren.murthy@bme.gatech.edu)

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>