Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetics: Overweight Affects DNA Methylation

22.12.2016

The extra pounds you gain during the holidays will not only show up on your hips but will also affect your DNA. This is the result of a large-scale international study coordinated by Helmholtz Zentrum München, a partner in the German Center for Diabetes Research, which has now been published in ‘Nature’. The study shows that a high BMI leads to epigenetic changes at nearly 200 loci of the genome – with effects on gene expression.

While our genes do not change in the course of life, our lifestyle can directly influence their surroundings. Scientists speak here of the epigenome (Greek epi: over, outside of, around), which refers to everything that happens on or around the genes. Up to now there has not been much research on how the epigenome is altered as a result of being overweight.


Overweight affects DNA methylation.

Source: Fotolia/SSilver

“This issue is particularly relevant because an estimated one and a half billion people throughout the world are overweight,” said first author Dr. Simone Wahl of the Research Unit Molecular Epidemiology (AME) at Helmholtz Zentrum München, “especially considering that being overweight can have adverse consequences and lead to diabetes and diseases of the cardiovascular and metabolic systems.”

World’s largest study on BMI and epigenetics

For this reason, the international research team led by Dr. Christian Gieger and Dr. Harald Grallert of the AME (as well as Jaspal Kooner and John Chambers of Imperial College London) examined possible correlations between body mass index (BMI) and epigenetic changes.* Using state-of-the-art technology, the team carried out the world's largest study so far on the subject.

The scientists examined the blood samples of over 10,000 women and men from Europe. A large proportion of these were inhabitants of London of Indian ancestry, who according to the authors are at high risk for obesity and metabolic diseases. In a first step with 5,387 samples **, the research team identified 207 gene loci that were epigenetically altered dependent on the BMI. They then tested these candidate loci in blood samples of an additional 4,874 subjects and were able to confirm 187 of these***. Further studies and long-term observations also indicated that the changes were predominantly a consequence of being overweight – not the cause.

Significant changes also in the expression of inflammatory genes

“In particular, significant changes were found in the expression of genes responsible for lipid metabolism and substrate transport, but inflammation-related gene loci were also affected,” said group leader Harald Grallert. From the data, the team was also able to identify epigenetic markers that could predict the risk of type 2 diabetes.

“Our results allow new insights into which signaling pathways are influenced by obesity“, said Christian Gieger, head of the AME. "We hope that this will lead to new strategies for predicting and possibly preventing type 2 diabetes and other consequences of being overweight.” Next, within the framework of translational research in the German Center for Diabetes Research, the researchers want to investigate in detail how the epigenetic changes affect the expression of the underlying genes.

Further Information

* Specifically, the team investigated the methylation patterns, i.e. the presence or absence of methyl groups on the DNA. By means of high-throughput measurements, these methylation patterns can now be investigated relatively quickly and on a large scale.

** Among others from the Augsburg KORA study, the London LOLIPOP study and a part of the EPICOR study population from Italy

*** Some of these have also been confirmed in adipose tissue, indicating that changes in gene regulation in disease-relevant tissues are also visible in the blood.

Background:
Helmholtz Zentrum München has extensive expertise in the field of genetic and epigenetic causal research on metabolic diseases: As recently as July 2016, the researchers were involved in the world’s largest genetic study on type 2 diabetes, which was likewise published in the renowned journal Nature. Link to press release: https://www.helmholtz-muenchen.de/en/press-media/press-releases/2016/press-relea...
Furthermore, already in March 2016 scientists of Helmholtz München showed that diet-induced obesity and diabetes can be passed on epigenetically to the offspring via both oocytes and sperm. Link to related press release: https://www.helmholtz-muenchen.de/en/press-media/press-releases/2016/press-relea...

Original Publication:
Wahl, S. et al. (2016): Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature, doi:10.1038/nature20784

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Research Unit of Molecular Epidemiology (AME) analyses population-based cohorts and case studies for specific diseases, using genomics, epigenomics, transcriptomics, proteomics, metabolomics and functional analyses. The aim of this research unit is to decipher the molecular mechanisms of complex diseases like type 2 diabetes or obesity. The unit administers the biological specimen repository of the Department of Epidemiology and stores the samples for national and international projects. http://www.helmholtz-muenchen.de/ame

The Institute of Epidemiology II (EPI II) focuses on the assessment of environmental and lifestyle risk factors which jointly affect major chronic diseases such as diabetes, heart disease and mental health. Research builds on the unique resources of the KORA cohort, the KORA myocardial infarction registry, and the KORA aerosol measurement station. Aging-related phenotypes have been added to the KORA research portfolio within the frame of the Research Consortium KORA-Age. The institute’s contributions are specifically relevant for the population as modifiable personal risk factors are being researched that could be influenced by the individual or by improving legislation for the protection of public health. http://www.helmholtz-muenchen.de/epi2

Research at the Institute of Genetic Epidemiology (IGE) focuses on planning, realization and analysis of projects regarding the identification of genetic factors responsible for complex traits. This involves application, further development and implementation of a variety of statistical methods to address specific aspects such as rare genetic variants, mitochondrial DNA, gene-gene and gene-environment interactions, family studies, and the handling of population structures. The elucidation of disease-relevant genetic factors as well as their inclusion into models of disease risk provides the basis of individualized approaches to treatment or prevention. http://www.helmholtz-muenchen.de/ige

The Institute of Human Genetics (IHG) at the Helmholtz Zentrum München and the Technical University of Munich: The Institute is concerned with identifying genes associated with disease and characterizing their functions. The main aim of the research projects is to develop disease-related genetic variation in humans and mice as well as to develop chromosome analysis techniques and new methods for dealing with specific issues in the sphere of pre- and post-natal diagnostics and tumor cytogenetics. http://www.helmholtz-muenchen.de/ihg

The German Center for Diabetes Research (DZD) is a national association that brings together experts in the field of diabetes research and combines basic research, translational research, epidemiology and clinical applications. The aim is to develop novel strategies for personalized prevention and treatment of diabetes. Members are Helmholtz Zentrum München – German Research Center for Environmental Health, the German Diabetes Center in Düsseldorf, the German Institute of Human Nutrition in Potsdam-Rehbrücke, the Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Medical Center Carl Gustav Carus of the TU Dresden and the Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard-Karls-University of Tuebingen together with associated partners at the Universities in Heidelberg, Cologne, Leipzig, Lübeck and Munich. http://www.dzd-ev.de/en/index.html

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Dr. Harald Grallert, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit of Molecular Epidemiology, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 1195, E-mail: harald.grallert@helmholtz-muenchen.de

Dr. Christian Gieger, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit of Molecular Epidemiology, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 4106 - E-mail: christian.gieger@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: BMI DNA Diabetes Environmental Health Epidemiology Epigenetics Helmholtz KORA Overweight diseases genes type 2 diabetes

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>