Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme with surprising dual function

24.01.2018

Scientists at the University of Bonn have clarified a surprising dual function of ceramide synthase. The enzyme not only catalyzes a central step of the production of vital lipids. It also has the ability to turn genes involved in lipid metabolism on or off. The study is being published in the renowned journal “Cell Reports”.

Ceramide synthases link fatty acids with certain amino acids to form so-called ceramides. These take on a number of vital functions in the organism. Their significance is so considerable that the enzymes which produce them have barely changed over many millions of years of evolution.


In the lab (from left): Franka Eckardt, Dr. Reinhard Bauer, Melanie Thielisch and Mariangela Sociale from the LIMES Institute (Life & Medical Sciences) of the University of Bonn.

© Foto: Barbara Frommann/Uni Bonn

For example, the ceramide synthase of the Drosophila fruit fly is very similar to that of humans. However, in contrast to the insect which is only a few millimeters in size, we have six different variants of the enzyme.

Nevertheless, the fruit fly is ideal for studying ceramide synthase. The insect may now even provide the answer to a question that has been bothering molecular biologists for some time. Because most ceramide synthases have not only one region for binding the fatty acid to the amino acid: “In addition to this catalytic center, the ceramide synthase often also has a so-called homeodomain”, explains Dr. Reinhard Bauer, lecturer at the LIMES Institute of the University of Bonn.

Homeodomains are protein regions that are usually binding to DNA. They are found mainly in transcription factors. These are proteins that attach to the DNA and thus for instance prevent certain genes from being read. However, until now it had been believed that ceramide synthases do not come into contact with DNA at all. But what would then be the purpose of the homeodomain?

Ceramide synthase turns off genes involved in lipid metabolism

“We were able to show that the ceramide synthase in fruit flies is also anchored in the inner membrane of the cell nucleus”, explains Mariangela Sociale, the first author of the study. In all animals, the nucleus acts as a kind of library that contains the DNA and thus the genetic information. The transcripts of the genes that the cell currently needs are generated in the nucleus. “The ceramide synthase can bind to certain regions of the DNA here and shut down particular genes”, says Sociale.

However, the synthase does not do this arbitrarily, but dependent on the fly’s nutritional status. If the fly is starving, the ceramide synthase releases its grip. Thus, one of the effects is that the gene for the lipase 3 can now be read. Lipase 3 breaks down fat into its components, which can then be used to generate energy. If there is enough food however, the gene for lipase 3 remains blocked. Fat is not broken down, but deposited as an energy store for leaner times in specialized depot cells. “The ceramide synthase therefore has an important control function in lipid metabolism”, emphasizes Bauer.

Several years ago, the scientists from the LIMES Institute already discovered a mutation which resulted in fruit flies losing weight. The researchers consequently named this genetic mutation “Schlank”, meaning ‘slim’ in German. “We now know that a mutation within the homeodomain can lead to this Schlank phenotype”, explains Bauer. “As a result, the enzyme can no longer bind to the DNA.” The fly consequently constantly forms lipase 3, even if nutritional conditions are favorable. It is therefore unable to build up a fat depot.

Interestingly, this effect disappears when researchers insert an intact mouse ceramide synthase gene into the Schlank flies. “The mouse gene is thus apparently also able to regulate the lipase activity in the fly”, explains Dr. Bauer. “And this is dependent on the nutritional status. This suggests that the homeodomain plays a role in mammals and, presumably, also in humans that is similar to its role in Drosophila.”

The ceramide synthase may therefore generally be a central control center in the lipid metabolism. This would make the homeodomain a promising new target for drugs, for instance against obesity or diabetes. The transcription factor function of ceramide synthases may also play a role in other diseases such as the rare, incurable Zellweger syndrome.

Publication: Mariangela Sociale, Anna-Lena Wulf, Bernadette Breiden, Kathrin Klee, Melanie Thielisch, Franka Eckardt, Julia Sellin, Margret H. Bülow, Sinah Löbbert, Nadine Weinstock, André Voelzmann, Joachim Schultze, Konrad Sandhoff and Reinhard Bauer: Ceramide Synthase Schlank Is a Transcriptional Regulator Adapting Gene Expression to Energy Requirements; Cell Reports 22, S. 1–12, 23. January 2018; DOI: 10.1016/j.celrep.2017.12.090

Contact:

PD Dr. Reinhard Bauer
LIMES Institute (Life & Medical Sciences) of the University of Bonn
Tel. +49(0)228/7362744
E-mail: r.bauer@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

Further reports about: DNA Drosophila Metabolism enzyme fruit fly function genes nutritional status synthase

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>