Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual spotlights in the brain

09.10.2012
How we manage to attend to multiple objects without being distracted by irrelevant information

The “tiki-taka”-style of the Spanish national football team is amazing to watch: Xavi passes to Andrès Iniesta, he just rebounds the ball once and it’s right at Xabi Alonso’s foot. The Spanish midfielders cross the field as if they run on rails, always maintaining attention on the ball and the teammates, the opponents chasing after them without a chance.


The striker has to divide his attention: He has to attend to the goalkeeper, but also to player #3 who might block his shot. By splitting his ‘spotlight of attention’ he stays on top of the situation. To ensure that his information processing capacities are not overtaxed he is able to suppress the irrelevant information next to and between his two attentional foci. This provides him with all the necessary information in optimal quality and without distraction. This process is visualized in the picture through various degrees of blurriness.
Image: Christian Kiel/ Fuchstrick GbR

An international team of scientists from the German Primate Center and McGill University in Canada, including Stefan Treue, head of the Cognitive Neuroscience Laboratory, has now uncovered how the human brain makes such excellence possible by dividing visual attention: The brain is capable of splitting its ‘attentional spotlight’ for an enhanced processing of multiple visual objects. (Neuron, doi: 10.1016/j.neuron.2011.10.013)

When we pay attention to an object, neurons responsible for this location in our field of view are more active then when they process unattended objects. But quite often we want to pay attention to multiple objects in different spatial positions, with interspersed irrelevant objects. Different theories have been proposed to account for this ability. One is, that the attentive focus is split spatially, excluding objects between the attentional spotlights. Another possibility is, that the attentional focus is zoomed out to cover all relevant objects, but including the interspersed irrelevant ones. A third possibility would be a single focus rapidly switching between the attended objects.

Studying rhesus macaques
In order to explain how such a complex ability is achieved, the neuroscientists measured the activity of individual neurons in areas of the brain involved in vision. They studied two rhesus macaques, which were trained in a visual attention task. The monkeys had learned to pay attention to two relevant objects on a screen, with an irrelevant object between them. The experiment showed, that the macaques’ neurons responded strongly to the two attended objects with only a weak response to the irrelevant stimulus in the middle. So the brain is able to spatially split visual attention and ignore the areas in between. “Our results show the enormous adaptiveness of the brain, which enables us to deal effectively with many different situations.

This multi-tasking allows us to simultaneously attend multiple objects”, Stefan Treue says. Such a powerful ability of our attentive system is one precondition for humans to become perfect football-artists but also to safely navigate in everyday traffic.

Original Publication
Robert Niebergall, Paul S. Khayat, Stefan Treue, Julio C. Martinez-Trujillo (2011): Multifocal attention filters out targets from distractors within and beyond primate MT neurons receptive field boundaries. Neuron, Volume 72, Issue 6, 1067-1079, 22 December 2011. doi: 10.1016/j.neuron.2011.10.013
Contact
Prof. Dr. Stefan Treue
Phone: +49 551 3851-117
E-mail: treue@gwdg.de

Susanne Diederich (Press and Communications)
Phone: +49 551 3851-359
E-mail: sdiederich@dpz.eu

The German Primate Center (DPZ) in Göttingen, Germany, conducts basic research on and with primates in the areas of infectious diseases, neurosciences and organismic biology. In addition, it operates four field stations abroad and is a competence and reference center for primate research. The DPZ is one of the 86 research and infrastructure institutions of the Leibnitz Association in Germany (http://www.leibniz-gemeinschaft.de).

Dr. Susanne Diederich | idw
Further information:
http://www.dpz.eu/
http://www.dpz.eu/akn

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>