Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diagnostic breakthrough: “Shaking piglets” attributed to previously unidentified virus

13.01.2017

Symptoms of tremors and shaking in newborn piglets are not a sign that the animals are cold, but rather that they are suffering from a specific viral infection. Researchers at Vetmeduni Vienna have now been able to prove this correlation for the first time using a newly developed test. The scientists detected a previously unknown virus, termed atypical porcine pestivirus (APPV), in “shaking piglets”, making it possible to clearly diagnose the potentially fatal disease. The virus remains in the animals for a long time following an infection and may also be transmitted sexually. The findings were published in the journal Veterinary Research.

Cases of newborn “shaking piglets” have been reported since the 1920s both in Europe and abroad. Yet an additional cause for these congenital tremors has so far eluded researchers. A previously unknown virus had therefore been suspected for quite some time – but without conclusive confirmation.


Suckling piglets can suffer a congenital tremor, which is caused by a so for un-detectable virus, the atypical porcine Pestivirus.

Michael Bernkopf/Vetmeduni Vienna

On the basis of new genomic sequence data, a team of researchers from the University Clinic for Swine, the Institute of Virology, and the Institute of Pathology and Forensic Veterinary Medicine at Vetmeduni Vienna has now been able to identify a new virus as the cause of this potentially life-threatening disease. The pathogen, which belongs to the so-called atypical porcine pestiviruses (APPV), was detected in diseased animals at Austrian farms using a specially developed test.

Congenital tremors may be life-threatening

“Depending on the severity of the shaking, congenital tremor presents a challenge for the piglets from the first minute of their life,” says first author Lukas Schwarz, veterinary clinician at the University Clinic for Swine. The tremor can sometimes be so severe that the piglet is unable to properly suckle milk.

Yet suckling is especially important for piglets in the first 24 hours after birth. Only mother’s milk contains everything the animals need to survive. “Without the first drink of mother’s milk, piglets have a very low chance of survival,” Schwarz explains.

In piglets which survive this first phase, symptoms usually subside after three or four weeks. In rare cases, a slight tremor remains in the ears. But getting this far requires an enormous amount of attention and care on the part of the pig farmers and veterinarians.

This makes it even more surprising that researchers have so far failed to identify a cause for this mysterious disease. A mortality rate of up to 30 percent is possible among affected piglets; the detection of the APPV virus therefore represents a diagnostic breakthrough.

“Shaking piglets” infected with previously unidentified virus

The pestiviruses had been considered a possible causative agent, along with other viral pathogens, but the established tests had so far remained without success. “It was the characterization of the atypical pestiviruses that first brought us on the right track,” says virologist Benjamin Lamp. On the basis of the sequence data, it was possible to identify a further strain of these viruses and so develop a new test.

Detection is now possible using the usual molecular methods such as polymerase chain reaction.
The detection procedure not only confirmed the presence of the virus in high numbers in the diseased piglets; the team was also able to detect the pathogen in the saliva and semen of mature pigs.

Sexual transmission possible

“The presence of the virus in the semen of a mature boar sheds new light on how the pathogen may be spread,” says Schwarz. “The virus appears to persist in some animals even without symptoms. We detected the pathogen in the semen of a former shaking piglet, which shows that the disease may be transmitted sexually.”

The virus is likely transmitted to the piglet at a stage of gestation when the central nervous system is developing, as indicated by changes in nerve fibres. Antibodies against the virus have been detected in sows, yet the uterine anatomy is such that it prevents transmission to the foetus. An infection among older animals is most likely asymptomatic.

Interdisciplinary cooperation led to the findings

Schwarz credits the research findings to the efficient cooperation among the campus partners and swine practitioners. “Although this disease has been present in Austria for some time, it was the intense cooperation with the university’s other institutes that allowed us to achieve a clear result so quickly. This not only enables us to make a clear diagnosis, but can also be helpful in developing a vaccine.”

Lamp sees more work to be one in the characterization and classification of the pestiviruses: “The discovered virus is only 90 percent identical to the new sequences of atypical pestiviruses. We should therefore reconsider the classification of this virus species.”

Service:
The article „Congenital infection with atypical porcine pestivirus (APPV) is associated with disease and viral persistence“ by Schwarz L., Riedel C., Högler S., Sinn LJ., Voglmayr T., Wöchtl B., Dinhopl N., Rebel-Bauder B., Weissenböck H., Ladinig A., Rümenapf T. and Lamp B. was published in Veterinary Research.
http://veterinaryresearch.biomedcentral.com/articles/10.1186/s13567-016-0406-1
DOI: 10.1186/s13567-016-0406-1

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Lukas Schwarz
University Clinic for Swine
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-6848
lukas.schwarz@vetmeduni.ac.at
and
Benjamin Lamp
Institute of Virology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2709
benjamin.lamp@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2017/...

Mag.rer.nat. Georg Mair | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>