Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danger in the Desert

22.11.2018

Mutations of the MERS virus contribute to its resistance against the defenses of the immune system

What causes only a harmless cold in camels can be fatal for humans: an infection with the MERS virus. Since its discovery in 2012, the virus was detected in approximately 2,000 patients and 36 percent of them have not survived the severe lung disease known as MERS.


A more efficient human-to-human transmission due to mutations of the MERS virus could cause an imminent pandemic.

Illustration: Markus Hoffmann


Dr. Markus Hoffmann, Hannah-Kleine-Weber and Prof. Dr. Stefan Pöhlmann, Infection Biology Unit, German Primate Center – Leibniz Insitute for Primate Research.

Photo: Karin Tilch

Until now, humans are mainly infected through contact with camels in the Arabian Peninsula and human-to-human transmissions are rare.

However, this could change due to the virus acquiring mutations. A team of scientists headed by Stefan Pöhlmann, Hannah Kleine-Weber and Markus Hoffmann from the German Primate Center - Leibniz Institute for Primate Research in Göttingen investigated virus mutations and found that certain mutations made the virus more resistant against the human immune system.

The analysis of mutations is essential for predicting the risk of a pandemic. Moreover, the MERS virus may serve as a blueprint for other zoonotic viruses that can be transmitted from animals to humans (Journal of Virology).

Just like the dreaded SARS virus, the MERS virus and several usually harmless common cold viruses belong to the coronaviruses. Some coronaviruses can be transmitted from animals to humans.

The MERS virus infection in dromedary camels causes only a mild cold. In contrast, human infection can lead to a severe respiratory disease, Middle East Respiratory Syndrome (MERS), which is often fatal.

The disease is most prevalent in the Arabian Peninsula where people are infected by dromedary camels that are kept for food and racing. The virus's potential to spread worldwide became apparent in 2015 when an infected person who had previously visited the Arabian Peninsula travelled to South Korea and transmitted the virus to others, resulting in 186 infections and 38 fatal MERS cases.

Virus mutations

The MERS outbreak in South Korea was associated with the emergence of a previously unknown viral mutation that reduces the ability of the virus to enter host cells.

As this process is necessary for the multiplication of the virus in the body, the mutation is supposedly not beneficial for the virus. However, a mutation would not have prevailed if it would not be associated with an advantage for the virus. Stefan Pöhlmann, Hannah Kleine-Weber and Markus Hoffmann of the German Primate Center in Göttingen searched for this effect.

They found that the mutation makes the MERS virus more resistant to antibodies produced by the body as a result of the infection. "In South Korea, a mutant of the MERS virus arose that that showed increased resistance against the antibody response. This finding shows that the planned use of antibodies for MERS therapy could lead to the development of resistant viruses," says Hannah Kleine-Weber, the lead author of the study.

Pandemic potential

The MERS virus is mutating and one of the next changes could make it easier for the virus to spread from person to person. An infected traveler could trigger a chain of infections that could potentially lead to a pandemic.

"We must develop systems that help us to predict whether a new mutation will have an impact on the transmissibility of the virus, i.e. whether there is an increased pandemic potential," says Markus Hoffmann.

As with any other viruses with a pandemic potential, it is important to assess the risk of the MERS virus. "Our study was conducted in the BMBF funded research network RAPID that aims to predict the potential risk of new MERS virus variants and to make recommendations regarding diagnostics, vaccines and behaviors," says Stefan Pöhlmann, head of the Infection Biology Unit at the German Primate Center.

Wissenschaftliche Ansprechpartner:

Dr. Markus Hoffmann
Tel: +49 (0)551 3851-338
E-mail: mhoffmann@dpz.eu

Originalpublikation:

Kleine-Weber H, Elzayat M T, Wang L, Graham B S, Müller M A, Drosten C, Pöhlmann S, Hoffmann M: Mutations in the spike protein of MERS-CoV transmitted in Korea increase resistance to antibody-mediated neutralization. Journal of Virology Nov 2018, JVI.01381-18; DOI: 10.1128/JVI.01381-18

Weitere Informationen:

https://www.dpz.eu/en/home/single-view/news/gefahr-aus-der-wueste.html
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4621 Printable images

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Further reports about: MERS Primatenforschung Primatenzentrum mutations pandemic pandemic potential viruses

More articles from Life Sciences:

nachricht New technique to determine protein structures may solve biomedical puzzles
12.12.2019 | Dana-Farber Cancer Institute

nachricht NTU Singapore scientists convert plastics into useful chemicals using su
12.12.2019 | Nanyang Technological University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>