Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danger in the Desert

22.11.2018

Mutations of the MERS virus contribute to its resistance against the defenses of the immune system

What causes only a harmless cold in camels can be fatal for humans: an infection with the MERS virus. Since its discovery in 2012, the virus was detected in approximately 2,000 patients and 36 percent of them have not survived the severe lung disease known as MERS.


A more efficient human-to-human transmission due to mutations of the MERS virus could cause an imminent pandemic.

Illustration: Markus Hoffmann


Dr. Markus Hoffmann, Hannah-Kleine-Weber and Prof. Dr. Stefan Pöhlmann, Infection Biology Unit, German Primate Center – Leibniz Insitute for Primate Research.

Photo: Karin Tilch

Until now, humans are mainly infected through contact with camels in the Arabian Peninsula and human-to-human transmissions are rare.

However, this could change due to the virus acquiring mutations. A team of scientists headed by Stefan Pöhlmann, Hannah Kleine-Weber and Markus Hoffmann from the German Primate Center - Leibniz Institute for Primate Research in Göttingen investigated virus mutations and found that certain mutations made the virus more resistant against the human immune system.

The analysis of mutations is essential for predicting the risk of a pandemic. Moreover, the MERS virus may serve as a blueprint for other zoonotic viruses that can be transmitted from animals to humans (Journal of Virology).

Just like the dreaded SARS virus, the MERS virus and several usually harmless common cold viruses belong to the coronaviruses. Some coronaviruses can be transmitted from animals to humans.

The MERS virus infection in dromedary camels causes only a mild cold. In contrast, human infection can lead to a severe respiratory disease, Middle East Respiratory Syndrome (MERS), which is often fatal.

The disease is most prevalent in the Arabian Peninsula where people are infected by dromedary camels that are kept for food and racing. The virus's potential to spread worldwide became apparent in 2015 when an infected person who had previously visited the Arabian Peninsula travelled to South Korea and transmitted the virus to others, resulting in 186 infections and 38 fatal MERS cases.

Virus mutations

The MERS outbreak in South Korea was associated with the emergence of a previously unknown viral mutation that reduces the ability of the virus to enter host cells.

As this process is necessary for the multiplication of the virus in the body, the mutation is supposedly not beneficial for the virus. However, a mutation would not have prevailed if it would not be associated with an advantage for the virus. Stefan Pöhlmann, Hannah Kleine-Weber and Markus Hoffmann of the German Primate Center in Göttingen searched for this effect.

They found that the mutation makes the MERS virus more resistant to antibodies produced by the body as a result of the infection. "In South Korea, a mutant of the MERS virus arose that that showed increased resistance against the antibody response. This finding shows that the planned use of antibodies for MERS therapy could lead to the development of resistant viruses," says Hannah Kleine-Weber, the lead author of the study.

Pandemic potential

The MERS virus is mutating and one of the next changes could make it easier for the virus to spread from person to person. An infected traveler could trigger a chain of infections that could potentially lead to a pandemic.

"We must develop systems that help us to predict whether a new mutation will have an impact on the transmissibility of the virus, i.e. whether there is an increased pandemic potential," says Markus Hoffmann.

As with any other viruses with a pandemic potential, it is important to assess the risk of the MERS virus. "Our study was conducted in the BMBF funded research network RAPID that aims to predict the potential risk of new MERS virus variants and to make recommendations regarding diagnostics, vaccines and behaviors," says Stefan Pöhlmann, head of the Infection Biology Unit at the German Primate Center.

Wissenschaftliche Ansprechpartner:

Dr. Markus Hoffmann
Tel: +49 (0)551 3851-338
E-mail: mhoffmann@dpz.eu

Originalpublikation:

Kleine-Weber H, Elzayat M T, Wang L, Graham B S, Müller M A, Drosten C, Pöhlmann S, Hoffmann M: Mutations in the spike protein of MERS-CoV transmitted in Korea increase resistance to antibody-mediated neutralization. Journal of Virology Nov 2018, JVI.01381-18; DOI: 10.1128/JVI.01381-18

Weitere Informationen:

https://www.dpz.eu/en/home/single-view/news/gefahr-aus-der-wueste.html
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4621 Printable images

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Further reports about: MERS Primatenforschung Primatenzentrum mutations pandemic pandemic potential viruses

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>