Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Core proteins exert control over DNA function

22.06.2016

Rice University-based models simulate how nucleosomes facilitate gene exposure

The protein complex that holds strands of DNA in compact spools partially disassembles itself to help genes reveal themselves to specialized proteins and enzymes for activation, according to Rice University researchers and their colleagues.


Rice University scientists simulated a nucleosome coiled in DNA to discover the interactions that control its unwinding. The DNA double helix binds tightly to proteins (in red, blue, orange and green) that make up the histone core, which exerts control over the exposure (center and right) of genes for binding.

Credit: Wolynes Lab/Rice University

The team's detailed computer models support the idea that DNA unwrapping and core protein unfolding are coupled, and that DNA unwrapping can happen asymmetrically to expose specific genes.

The study of nucleosome disassembly by Rice theoretical biological physicist Peter Wolynes, former Rice postdoctoral researcher Bin Zhang, postdoctoral researcher Weihua Zheng and University of Maryland theoretical chemist Garegin Papoian appears in the Journal of the American Chemical Society. The research is part of a drive by Rice's Center for Theoretical Biological Physics (CTBP) to understand the details of DNA's structure, dynamics and function.

The spools at the center of nucleosomes, the fundamental unit of DNA organization, are histone protein core complexes. Nucleosomes are buried deep within a cell's nucleus. About 147 DNA base pairs (from the more than 3 billion in the human genome) wrap around each histone core 1.7 times. The double helix moves on to spiral around the next core, and the next, with linker sections of 20 to 90 base pairs in between.

The structure helps squeeze a 6-foot-long strand of DNA in each cell into as compact a form as possible while facilitating the controlled exposure of genes along the strand for protein expression.

The spools consist of two pairs of heterodimers, macromolecules that join to form the core. The core is stable until genes along the DNA are called upon by transcription factors or RNA polymerases; the researchers' goal was to simulate what happens as the DNA unwinds from the core, making itself available to bind to outside proteins or make contact with other genes along the strand.

The researchers used their energy landscape models to simulate the nucleosome disassembly mechanism based on the energetic properties of its constituent DNA and proteins. The landscape maps the energies of all the possible forms a protein can take as it folds and functions. Conceptual insights from energy landscape theory have been implemented in an open-source biomolecular modeling framework called AWSEM Molecular Dynamics, which was jointly developed by the Papoian and Wolynes groups.

Wolynes said most studies elsewhere treated the histone core as if it were rigid and irreversibly disassociated when DNA unwrapped. But more recent experimental studies that involved gently pulling strands of DNA or used fluorescent resonance energy transfer, which measures energy moving between two molecules, showed the protein core is flexible and does not completely disassemble during unwrapping.

In their simulations, the researchers found the core changed its shape as the DNA unwound. Without DNA, they found the histone core was completely unstable in physiological conditions.

Their simulations showed that histone tails - the terminal regions of the core proteins - play a crucial role in nucleosome stability. The tails are highly charged and bind tightly with DNA, keeping its genomic content from being exposed until necessary. Their models predicted a faster unwrapping for tail-less nucleosomes, as seen in experiments.

The nucleosome study is part of a larger effort both by Papoian at Maryland and by Wolynes with his colleagues at CTBP to understand the mechanics of DNA, from how it functions to how it reproduces during mitosis. Wolynes said the new study and another new one by his lab on DNA during mitosis represent the opposite ends of the size scale.

"We can understand things at each end of the scale, but there's a no-man's land in between," he said. "We'll have to see whether the phenomena in the present-day no-man's land can be understood. I don't believe in magic; I believe they eventually will."

Wolynes is the D.R. Bullard-Welch Foundation Professor of Science, a professor of chemistry, of biochemistry and cell biology, of physics and astronomy and of materials science and nanoengineering at Rice and a senior investigator of the National Science Foundation (NSF)-funded CTBP. Papoian is the Monroe Martin Professor and chemical physics director at the University of Maryland. Zhang will join the Massachusetts Institute of Technology as an assistant professor in July.

###

The research was supported by the NSF, the CTBP and the National Institute of General Medical Sciences.

The researchers used the NSF-supported DAVinCI supercomputer administered by Rice's Ken Kennedy Institute for Information Technology.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/jacs.6b02893.

This news release can be found online at http://news.rice.edu/2016/06/20/core-proteins-exert-control-over-dna-function/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Wolynes Research Lab: http://wolynes.rice.edu/node/129

Papoian Lab: http://papoian.chem.umd.edu

Associative memory, Water mediated, Structure and Energy Model (AWSEM) protein simulation: http://awsem-md.org

Center for Theoretical Biological Physics: https://ctbp.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

Further reports about: Biological Physics Core DNA genes mitosis nucleosomes proteins

More articles from Life Sciences:

nachricht New RNA sequencing strategy provides insight into microbiomes
17.12.2018 | University of Chicago Medical Center

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>