Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copycat protein finds a perfect match

22.11.2010
Evolution has left a protein and nucleic acid molecule with remarkably similar structures, allowing them to undergo modification by closely related enzymes

As proteins are synthesized during messenger RNA translation, fresh amino acids are delivered to the ribosome of the cell by nucleic acid molecules known as transfer RNAs (tRNAs). Each amino acid has a cognate tRNA, and the two are joined by specialized enzymes known as aminoacyl-tRNA synthetases (aaRS).

Scientists have also identified a number of bacterial aaRS paralogs, counterparts that resemble these enzymes but lack key functional domains. The role of these proteins is mostly a mystery, but a team led by Shigeyuki Yokoyama at the RIKEN Systems and Structural Biology Center in Yokohama has now revealed an unexpected function for the Escherichia coli aaRS paralog GenX1.

“I thought that elucidation of the structure and function of aaRS paralogs would lead to an understanding of not only mechanisms of genetic code translation but also the evolution of living organisms,” explains Yokoyama. In fact, GenX is closely related to the aaRS that transfers the amino acid lysine; although it can no longer bind lysine’s tRNA, it still associates strongly with lysine, and on the whole these two proteins are highly similar in structure.

This similarity suggested to the team that GenX transfers lysine to a different molecular target, subsequently identified as elongation factor P (EF-P): a translation-associated protein whose structure closely resembles the distinctive L-shape of tRNA molecules. “This is the first discovery of such striking similarities in structure and function between a nucleic acid and a protein, although they are completely different molecules,” says Yokoyama. He proposes that these two molecules may have come to resemble each other by a process of ‘convergent evolution’, which favored the ability to productively interact with such closely related enzymes (Fig. 1).

Although it is extremely common for one protein to modulate the activity of another by attaching one of a selection of chemical groups, this represents the first known example of a protein being modified by the enzymatic addition of an entire amino acid. Nevertheless, the researchers demonstrated that this activity plays a vital role in protein production by E. coli cells, and is therefore essential to their survival.

Yokoyama now hopes to more closely explore the details of this process, but he also sees the potential for short-term applications as well. “GenX exists only in bacterial species, such as E. coli and Salmonella, and not in eukaryotic organisms, such as humans,” he says. “Therefore, GenX is a promising target for developing new antimicrobial agents for pathogenic bacteria … without adverse side effects.”

The corresponding author for this highlight is based at the RIKEN Systems and Structural Biology Center

1. Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C. & Yokoyama, S. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nature Structural & Molecular Biology 17, 1136–1143 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>