Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019

While studying the chemical reactions that occur in the flow of gases around a vehicle moving at hypersonic speeds, researchers at the University of Illinois used a less-is-more method to gain greater understanding of the role of chemical reactions in modifying unsteady flows that occur in the hypersonic flow around a double-wedge shape.

"We reduced the pressure by a factor of eight, which is something experimentalists couldn't do," said Deborah Levin, researcher in the Department of Aerospace Engineering at the University of Illinois at Urbana-Champaign.


The study about chemical reactions that occur in hypersonic flow around spacecraft looked at three types of gas compositions -- molecular nitrogen, non-reacting air consisting of molecular nitrogen and oxygen, and reacting air with oxygen dissociation and the nitric oxide exchange reactions.

Credit: University of Illinois Department of Aerospace Engineering

"In an actual chamber, they tried to reduce the pressure but couldn't reduce it that much because the apparatuses are designed to operate within a certain region. They couldn't operate it if the pressure was too low. When we reduced the pressure in the simulation, we found that the instabilities in the flow calmed down. We still had a lot of the kind of vortical structure--separation bubbles and swirls--they were still there. But the data were more tractable, more understandable in terms of their time variation."

Levin conducted the research along with her, then, doctoral student Ozgur Tumuklu, and Vassilis Theofilis from the University of Liverpool.

The Direct Simulation Monte Carlo (DSMC) approach, a high-fidelity physical approach was used to simulate the hypersonic flow. But, like any method, it has pros and cons. One con is that it creates the flow by gathering large amounts of collision data, producing reams and reams of particle data, and with it, statistical noise.

The researchers fed the DSMC results into a window proper orthogonal decomposition program, an example of what is known as a reduced order model to make the analyses of the time behavior of the DSMC results much more feasible.

"It's a very clever method that is more tractable and can reduce computational effort," Levin said. "Before we had this technique, we'd select three-dimensional data of pressure, density, and temperature, which are varying throughout the whole flow over the external shape of the vehicle. We'd sit at different locations in the flow and collect data at every time step.It winds up being a treasure hunt--you look here, you look there, wherever you think there is a sensitive part of the flow where you could see some changes.

"The main difference in using WPOD is that it organizes all of that spacial data, which is changing as a function of time, and it gives you some idea as to what it thinks are the decay modes," Levin said.

In addition to the application of this new method to interpret data, the team of researchers gained new knowledge about the chemical reactions that happen in hypersonic flow. The study looked at three types of gas compositions - molecular nitrogen, non-reacting air consisting of molecular nitrogen and oxygen, and reacting air with oxygen dissociation and the nitric oxide exchange reactions.

"We learned about vibrational temperatures," Levin said. "These are usually very hard to compute. We learned about being able to predict chemical species, like nitric oxide--a compound in the gas phase, that are only present in very small amounts. It's produced in hypersonic flows in one out of one thousand particles. It's not a major component, like 79 percent nitrogen, but it's very important and we wanted to be able to predict it. Using this technique, we were able to do it so much more easily. Because of that we were able to understand what the affect of the chemistry was in the flow that produced the nitric oxide, and how that affected the different stability modes."

Tumuklu created short videos by saving all of the data in frames, then speeding it up to show how the flow evolves over time. Although difficult to see with an untrained eye, Levin said the video shows the difference in the way the shocks interact for the nitrogen case that has no chemical reactions and the reacting aircase of 79 percent nitrogen and 21 percent oxygen, which is the composition of air in Earth's atmosphere.

"There is also a feature called the 'triple point' represented by a red dot on the video. If you look very closely, at the two videos, the triple point on the nitrogen case never moves; it stays at one location while everything moves about it.

But in the case of the reacting air, the triple point does move. It oscillates back and forth with everything else still moving around it," Levin said. "This told us what the effective chemical reactions were. They are dumping extra heat or energy into the flow, which changes the instability, the unsteady behavior.

Levin said aircraft designers over design to compensate for not knowing the exact needs--for example, the minimum thickness needed for a heat shield.

"Ultimately, through this basic research, we will get some answers, some rules of thumb for people, who are at the designing level," she said. "They won't have to run petascale calculations, but they'll know that if they have certain shapes at certain positions to the angle of attack, they need to worry about instabilities when designing spacecraft for safe reentry into Earth's atmosphere or other atmospheres. They may take out a flap or reposition a flap for a control surface to minimize or prevent instabilities."

Debroah Levin | EurekAlert!
Further information:
https://aerospace.illinois.edu/news/controlling-instabilities-allows-closer-look-chemistry-around-vehicles-traveling-hypersonic
http://dx.doi.org/10.1103/PhysRevFluids.4.033403

More articles from Life Sciences:

nachricht Machine learning microscope adapts lighting to improve diagnosis
20.11.2019 | Duke University

nachricht The neocortex is critical for learning and memory
20.11.2019 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>