Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using computational biology for the annotation of proteins

26.11.2012
Research carried out at Universidad Carlos III of Madrid (UC3M) in collaboration with the Centro Nacional de Investigaciones Oncológicas (CNIO – Spanish National Cancer Research Center) employed computational techniques to improve the characterization of proteins.
The system they developed has allowed them to predict, for example, the relationship between two human proteins and telomeres, which led to their possible implication in cellular aging and the development of cancer; this awaits experimental verification.

Proteins are molecules that are formed by chains of amino acids and they play a fundamental role in all of life, given that they contain the coded information in genes; they, therefore, carry out numerous functions in an organism: immunological (antibodies), structural (they constitute the majority of cellular material), bioregulating (they form part of enzymes) and a long list of etceteras. In short, they regulate thousands of process that take place within all organisms, including inside the human organism, and they frequently do so by means of relationships they establish with other cells.

“Analyzing and using this network of interactions is a very interesting task due to the large number of associations that exist and to the multiple forms in which one protein can influence the function of others,” explains Professor Beatriz García, of UC3M’s Computer Science department. “In such a complex biological scenario, determining the functional associations through experiments is very costly, so we have tried to apply computational tools to predict these functions and so orient experimentation,” she points out.

Thus, the idea is to use techniques from the field of Artificial Intelligence, specifically from the area of Machine Learning, to obtain useful results for Biology, as part of an emerging interdisciplinary field known as Biocomputing or Computational Biology. In this context, this line of research goes further in the annotation of the function of proteins, that is, in the determination of which protein or which group of proteins performs which task within an organism.

In short, these scientists have dealt with two specific problems: the prediction of functional associations between pairs of proteins in the bacteria Escherichia coli and the extension of biological pathways in humans. In addition, they offer conclusions regarding the interpretation of those predictions, which may help explain the function of the cellular processes that were studied.

“In particular,” states Beatriz García, “the predictions obtained regarding two human proteins stand out (E3 SUMO-protein ligase y E3 ubiquitin-protein ligase DTX1); these were previously related to the controlled degradation of certain proteins, and we can now propose a new function related to the stabilization of telomeres and, therefore, their possible implication in cellular aging and the development of cancer, which will require experimental verification”.

For this study, part of which was recently published in the journal PLoS ONE, the researcher has received the award for the best doctoral dissertation in her field (Experimental Sciences and Technology) from the Real Academia de Doctores de España (Spanish Royal Academy of Doctors).

The implications that this work holds for the scientific community are already being felt. In fact, the results of the first problem that the project analyzes have already been integrated into the predictions server EcID (E.coli Interaction Database) and they offer a reliability value for the predictions that improves the system’s performance when finding functional associations among the proteins that appear in this database.

Moreover, the second biological problem dealt with in the study opens a new area of research in Biocomputing, by extending already existing pathways. “The procedure it presents complements the only previously existing publication in the field, extending the pathways with many more proteins and exploring a greater surface of the network of interactions,” comments the researcher.

In addition, it could be applied to many more problems of functional annotation in Biology and other fields in which there is relevant information with multiple relationships. In any case, much work remains to be done in the area of Biocomputation. “There are still so many unresolved biological problems that need computational solutions,” assures Beatriz García, who highlights the relevance of this field, which is growing with the advances in new technologies; yet many computational challenges remain, such as the analysis of the new generation of sequencing. “This is an area that needs more trained professionals who can integrate Biology and Computer Science, in order to improve our knowledge of our organism at the molecular level and, finally, to facilitate the treatment of diseases,” she concludes.

Ana María Herrera | alfa
Further information:
http://www.uc3m.es/portal/page/portal/actualidad_cientifica/noticias/biology

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>