Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communication between neural networks

17.12.2018

Researchers at the Bernstein Center Freiburg and colleagues are proposing a new model to explain how neural networks in different brain areas communicate with each other

The brain is organized into a network of specialized networks of nerve cells. For such a brain architecture to function, these specialized networks – each located in a different brain area – need to be able to communicate with each other.


How do neural networks in different brain areas communicate with each other? The Bernstein Center Freiburg proposes a new model. Illustration: BCF

But which conditions are required for communication to take place and which control mechanisms work? Researchers at the Bernstein Center Freiburg and colleagues in Spain and Sweden are proposing a new model that combines three seemingly different explanatory models. Their conclusions have now been published in Nature Reviews Neuroscience.

The synthesis of Dr. Gerald Hahn (Pompeu Fabra University, Barcelona/Spain), Prof. Dr. Ad Aertsen (Bernstein Center Freiburg), Prof. Dr. Arvind Kumar (formerly Bernstein Center Freiburg, now KTH Royal Institute of Technology, Stockholm/Sweden) and colleagues is based on the theory of dynamic systems and takes particular account of how the level of activity of the respective networks influences the exchange of information.

The study combines three prominent explanatory models that have been proposed in recent years: synfire communication, communication through coherence and communication through resonance.

"We believe that our work helps to provide a better understanding as to how neuron populations interact, depending on the state of their network activity, and whether messages from a neuron group in brain area A can reach a neuron group in brain area B or not," says Arvind Kumar.

"This insight is an essential prerequisite in understanding not only how a brain functions locally, within a limited area of the brain, but also more globally, across whole brain areas.”

The scientists were particularly interested in what role activity rhythms occurring in the brain - known as oscillations - play in communication. Typically these oscillations can affect anything from a large group of neurons up to entire brain areas and can either be slow, such as alpha or theta rhythms, or fast, such as the gamma rhythm.

In their theoretical model, the researchers were able to show that the interaction of these rhythms with each other plays a significant role in determining whether communication between networks can take place or not. Certain types of interlocking of these rhythms could act as important control mechanisms.

"The possibility of exchanging information depends on many factors, for example whether the oscillations are fast or slow, the frequencies are similar or different, the relationship between the phases and so on," explains Ad Aertsen. "With our model, we are now able to make specific predictions for each of these cases. The next step will be to test these predictions in experiments.“

Detailed Information
http://www.bcf.uni-freiburg.de/news/18-12-17-aertsen-kumar

Original Publication
Hahn, G./Ponce-Alvarez, A./Deco, G./Aertsen, A./Kumar, A. (2018): Portraits of communication in neuronal networks. In: Nature Reviews Neuroscience.https://www.nature.com/articles/s41583-018-0094-0

Bernstein Center Freiburg
The Bernstein Center Freiburg is a central research facility for Computational Neuroscience and Neurotechnology at the University of Freiburg. At the BCF “Computational Neuroscience” is defined as the hypothesis driven research approach to unravel mechanisms of brain function and dysfunction using theory, simulation and experiment in a complementing, synergistic fashion.
http://www.bcf.uni-freiburg.de/about-us

Wissenschaftliche Ansprechpartner:

Prof. Dr. Ad Aertsen
Faculty of Biology / Bernstein Center Freiburg
University of Freiburg
Phone: +49 (0) 761/203-9550
aertsen@biologie.uni-freiburg.de

Prof. Dr. Arvind Kumar
Department of Computational Science and Technology
KTH Royal Institute of Technology
Phone: +46 (8) 790 62 24
arvkumar@kth.se

Originalpublikation:

Hahn, G./Ponce-Alvarez, A./Deco, G./Aertsen, A./Kumar, A. (2018): Portraits of communication in neuronal networks. In: Nature Reviews Neuroscience.
https://www.nature.com/articles/s41583-018-0094-0

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/communication-between-n...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Drug discovery: First rational strategy to find molecular glue degraders
03.08.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Chlamydia: Greedy for Glutamine
03.08.2020 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>