Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorful clones: Researchers track development and behavior of individual blood stem cells

24.11.2016

Harvard Stem Cell Institute (HSCI) researchers have used a colorful, cell-labeling technique to track the development of the blood system and trace the lineage of adult blood cells travelling through the vast networks of veins, arteries, and capillaries back to their parent stem cell in the marrow. Their findings have already advanced the understanding of blood development as well as blood diseases.

Developed at Harvard's Center for Brain Science, the technique involves coding multiple colors of florescent protein into a cell's DNA. As genes recombine inside the cell, the cell elaborates a color unique to its genetic code. For blood stem cells, that color becomes a genetic signature passed down to daughter cells; purple stem cells, for example, will only make purple blood cells.


Color-labeling blood stem cells allows HSCI researchers to track how they respond to transplantation or stress.

Credit: Vionnie Yu

Two independent research teams, one led by David Scadden, HSCI co-director and Gerald and Darlene Jordan Professor of Medicine at Harvard University, and the other by his colleague Leonard Zon, HSCI Executive Committee member and director of the Stem Cell Program at Boston Children's Hospital, adapted the color-based labeling to the blood system to better understand how blood stem cells behave.

In a study recently published in Nature Cell Biology, a research team led by Scadden found that in mice individual blood stem cells had a specific and restricted blood production repertoire.

"We used to think of stem cells as the mother cell that gives rise to all these other cells in the system on an as needed basis," said Vionnie Yu, first author of the study and, at the time of the research, a postdoctoral fellow in Scadden's lab. But their results suggest that stem cells have a scripted set of responses and cannot make just any blood cell type.

When transplanted into a new environment, each cell not only consistently made the same mature blood cell types but also the same number of those cells. Additionally, clones responded similarly to inflammatory and chemotoxic stress, suggesting the cells had a hardwired memory dictating their behavior. They found that this memory was written into the stem cell epigenome.

Blood stem cells, said Scadden, may be more like chess pieces with a fixed way they can behave within the system.

"When you are young and have a full chess set you can mount a vigorous and multilayered defense to an attack on your system," Scadden said, "but if you lose chess pieces with age or you don't receive a full suite of players during a bone marrow transplant, the pieces you have left could determine your ability to protect yourself."

In addition to looking at blood stem cells in adult mice, color tagging also allows researchers to explore the blood system as a zebrafish embryo develops.

"We've been working with David Scadden for years as part of the HSCI. Initially, we presented our work at a joint lab meeting and realized we could study stem cell clones with this multi-color system," said Zon, who is also a professor in Harvard's Stem Cell and Regenerative Biology department. "We shared ideas and results, and even wrote a grant together on the topic. It is wonderful that studying clonal dynamics in two different animals could provide such complementary information."

In a study published yesterday in Nature Cell Biology, the researcher team led by Zon used the color tagging system to define the origin and number of stem cells that contribute to lifelong blood production.

About 24 to 30 hours after fertilization, dozens of stem cells budded off from the dorsal side of the aorta. Only twenty made it to a secondary site before heading to the kidney marrow, the zebrafish equivalent to human and mouse bone marrow.

After transplanting the multicolored marrow into fish that had received sublethal doses of radiation, the researchers found that some blood stem cell lineages supplied a greater proportion of blood than they had before and that certain lineages could survive harsher conditions than others.

Knowing which cells are responsible for blood production could have implications for understanding the development of blood cancers, explains Jonathan Henninger, a graduate student in Zon's lab at Boston Children's Hospital and first author in the study.

For example, one blood stem cell could develop a mutation that gives it a competitive edge, allowing it to take over the blood system.

"If that cell starts behaving badly, it could lead to blood disorders, such as myeloid dysplasia and leukemia," Henninger said.

Researchers know these disorders come from a single stem cell or a downstream progenitor cell, said Henninger, but right now they are looking at populations of stem cells in bulk. "To be able to identify that single cell that went awry could help us better understand these diseases."

Media Contact

Hannah Robbins
hannah_robbins@harvard.edu
617-496-1491

 @HarvardMed

http://hms.harvard.edu 

Hannah Robbins | EurekAlert!

Further reports about: HSCI Harvard Nature Cell Biology blood cell blood stem cells blood system clones stem cells

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>