Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closed-loop stimulation promises fewer side effects

03.02.2016

How adaptive stimulation could make a significant difference for patients with neurological disorders such as Parkinson’s disease

Could potential side effects in the treatment of Parkinson’s disease with stimulation be avoided with a closed-loop approach, which constantly adapts to the symptoms?


Image source: Gunnar Grah/BrainLinks-Braintools

This is one of the key questions Dr. Ioannis Vlachos and his colleagues Taskin Deniz, Prof. Dr. Ad Aertsen, and Prof. Dr. Arvind Kumar address in a study that was now published in the journal “PLoS Computational Biology.”

The approach developed at Bernstein Center Freiburg and BrainLinks-BrainTools cluster of excellence of Freiburg University offers a significant step forward in the research for innovative methods in the treatment of Parkinson’s disease (PD):

“There are currently only two common therapies to treat this disease. Either you can administer drugs or, if this does not work, one has to resort to electrical stimulation, the so-called deep brain stimulation,” Vlachos explains. In the latter approach, which currently follows a method known as open-loop stimulation, an electrode is implanted in the patient’s brain to provide a continuous train of stimulation pulses. “In principle, this resembles the approach of the cardiac pacemaker,” says Vlachos.

However, the symptoms of Parkinson’s disease are not constant. And therefore, the researchers argue, constantly stimulating the brain with the same signal is not the most efficient treatment.

“In our closed-loop approach, the electrode provides a stimulus that adjusts to the momentary symptoms. Through this method we are hoping to avoid some side effects such as gait imbalance or speech impairment which occur in conventional DBS treatment”, Vlachos explains.

In this new closed-loop approach, brain activity is recorded and fed to a neuroprosthetic device, which then adjusts the stimulation strength. The controller continuously monitors the brain activity that reflects the severity of the PD symptoms. The nature of the recorded activity determines the stimulation signal.

If stronger stimulation is required, the control input gets stronger, if the activity becomes weaker, the stimulation is weakened, and if there is no pathological activity the device will not provide any stimulation. “This saves battery life and, hence, increases recharging and maintenance intervals – clearly an advantage for the patient carrying the battery,” the researcher explains.

The same approach could be used for the treatment of other brain diseases such as epilepsy or schizophrenia. Moreover, Vlachos' method could also be used to devise controllers for non-invasive stimulation, such as transcranial stimulation techniques. This means that the brain can be stimulated from the outside, without the need to drill a hole into the skull and implant an electrode into the brain.

The closed-loop stimulation method developed by Vlachos and colleagues can further be adapted to influence brain activity to address basic science questions:

“For instance, when animals attend to an input there is often an increase in oscillations. Using our controller, we can modulate the strength of oscillations and test if and how our attention is affected by such network oscillations.” After promising results in computer simulations modeling the activity dynamics of large networks of neurons, the next step will be to verify the approach in animal models, before it can be tested in human patients.

Original Publication:
Vlachos I, Deniz T, Aertsen A, Kumar A (2016) Recovery of dynamics and function in spiking neural networks by closed-loop control. PLoS computational biology 12(2), e1004720

Contact:
Dr. Ioannis Vlachos
Bernstein Center Freiburg / BrainLinks-BrainTools
University of Freiburg
Phone: +49 (0)761 / 203 - 9569
Fax: +49 (0)761 / 203 – 9559
E-Mail: vlachos@bcf.uni-freiburg.de

Michael Veit
Science Communicator
Bernstein Center Freiburg
Phone: +49 (0)761 / 203 - 9322
E-Mail: michael.veit@bcf.uni-freiburg.de

Levin Sottru
Science Communicator
BrainLinks-BrainTools Cluster of Excellence
Phone: +49 (0) 761 / 203 – 67721
E-Mail: levin.sottru@brainlinks-braintools.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-02.14-en?set_language=en

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>