Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018

International researchers from various universities conduct a unique experiment in the Large Wave Flume

Salt marsh plants such as cordgrass and sea club-rush protect coastal areas in storm surge conditions and provide a buffer for approaching waves. But what happens to the vegetation if storm surges occur more frequently or become more severe in the course of climate change? And how will this impact coastal erosion?


Silt grass in the wave channel

UHH/MIN/Latos


Surveying of plants

UHH/MIN/Latos

An international research team is currently exploring these questions in a unique experiment in the Large Wave Flume at the Coastal Research Centre, a joint facility of Leibniz University Hannover and TU Braunschweig. The research results could illustrate the consequences of climate change for the invaluable role of tidal marsh in providing protection against coastal erosion.

Salt marshes occur on shallow coasts influenced by tides. They provide a habitat for adapted plants and animals, protect the coast, and contribute to climate protection as they store carbon dioxide from the atmosphere. However, if storm surges occur more frequently due to climate change, the system might become imbalanced and lose its protective function for the coast.

To date, researchers can neither predict the resistance of tidal marshes against more frequent or more severe flooding nor what kind of storm surges might destroy them. Salt marshes are considerably more complex than dunes or sand beaches. On the one hand, they contain large quantities of silt and loam, resulting in “sticky” soil. On the other hand, their protective vegetation is more or less pronounced.

Within the framework of the Hydralab+ project RESIST (“Response of Ecologically-mediated Shallow Intertidal Shores and their Transitions to extreme hydrodynamic forcing”), an international team will address these issues by analysing the effects of heavy swells on seedlings and fully-grown plants of different species, as well as the effect of soil composition on coastal erosion. Over a period of three weeks, researchers at the Large Wave Flume in Hannover will expose various salt marsh plants as well as sediment samples to large waves and storm surges.

In March 2018, researchers collected plants such as cordgrass and sea club-rush in the Netherlands. Subsequently, they planted them in wooden boxes, which were then positioned in five different soil zones of the Large Wave Flume.

For instance, in one zone the team will study the effects of storm surges in summer and winter. For this, some plants were drained in order to simulate dieback due to drought. Researchers will use another zone to test new erosion control equipment made from potato starch. The mesh is fixed to the ground inside the boxes and should protect both seedlings and sediment against waves.

A total of 18 sediment drill cores will also be used in the experiment, which the RESIST team extracted from the silty east coast and the sandy west coast of the UK in July. Researchers examined the texture and condition by means of a micro CT scanner in Cambridge. The drill cores will be opened at the side and fixed at the end of the Large Wave Flume. This is where they will be exposed to the waves, enabling researchers to track the progress of erosion after each wave cycle.

The project is led by the University of Cambridge (UK), in collaboration with Universität Hamburg (Germany), TU Braunschweig (Germany), University of Antwerp (Belgium), as well as the Royal Netherlands Institute for Sea Research.

The Large Wave Flume at the Coastal Research Centre

The Large Wave Flume at the Coastal Research Centre is a joint research facility of Leibniz University Hannover and TU Braunschweig. Measuring 5 metres in length, 7 metres in depth and comprising a usable length of 307 metres, it is one of the largest wave flumes worldwide. The hydraulic wave generator simulates continuous waves and swells under deep and shallow water conditions. In addition, it generates continuous waves up to two metres high, as well as wave spectrums with significant wave heights of up to 1.3 metres.

Contact persons (contact details for interviews available upon request)

- Dr. Iris Möller, University of Cambridge, Coastal Research Unit
-Dipl.-Ing. Matthias Kudella, Leibniz Universität Hannover, Coastal Research Centre
- Dr. Stefanie Nolte, Universität Hamburg, Applied Plant Ecology
- Dr. Maike Paul, Technische Universität Braunschweig, Institute of Geoecology

Contact:
Maria Latos
Universität Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Communications and Collaborations
Tel.: +49 40 42838-8109
Email: maria.latos@uni-hamburg.de

Photos are available upon request.

Mechtild Freiin v. Münchhausen | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-hannover.de

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>