Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018

International researchers from various universities conduct a unique experiment in the Large Wave Flume

Salt marsh plants such as cordgrass and sea club-rush protect coastal areas in storm surge conditions and provide a buffer for approaching waves. But what happens to the vegetation if storm surges occur more frequently or become more severe in the course of climate change? And how will this impact coastal erosion?


Silt grass in the wave channel

UHH/MIN/Latos


Surveying of plants

UHH/MIN/Latos

An international research team is currently exploring these questions in a unique experiment in the Large Wave Flume at the Coastal Research Centre, a joint facility of Leibniz University Hannover and TU Braunschweig. The research results could illustrate the consequences of climate change for the invaluable role of tidal marsh in providing protection against coastal erosion.

Salt marshes occur on shallow coasts influenced by tides. They provide a habitat for adapted plants and animals, protect the coast, and contribute to climate protection as they store carbon dioxide from the atmosphere. However, if storm surges occur more frequently due to climate change, the system might become imbalanced and lose its protective function for the coast.

To date, researchers can neither predict the resistance of tidal marshes against more frequent or more severe flooding nor what kind of storm surges might destroy them. Salt marshes are considerably more complex than dunes or sand beaches. On the one hand, they contain large quantities of silt and loam, resulting in “sticky” soil. On the other hand, their protective vegetation is more or less pronounced.

Within the framework of the Hydralab+ project RESIST (“Response of Ecologically-mediated Shallow Intertidal Shores and their Transitions to extreme hydrodynamic forcing”), an international team will address these issues by analysing the effects of heavy swells on seedlings and fully-grown plants of different species, as well as the effect of soil composition on coastal erosion. Over a period of three weeks, researchers at the Large Wave Flume in Hannover will expose various salt marsh plants as well as sediment samples to large waves and storm surges.

In March 2018, researchers collected plants such as cordgrass and sea club-rush in the Netherlands. Subsequently, they planted them in wooden boxes, which were then positioned in five different soil zones of the Large Wave Flume.

For instance, in one zone the team will study the effects of storm surges in summer and winter. For this, some plants were drained in order to simulate dieback due to drought. Researchers will use another zone to test new erosion control equipment made from potato starch. The mesh is fixed to the ground inside the boxes and should protect both seedlings and sediment against waves.

A total of 18 sediment drill cores will also be used in the experiment, which the RESIST team extracted from the silty east coast and the sandy west coast of the UK in July. Researchers examined the texture and condition by means of a micro CT scanner in Cambridge. The drill cores will be opened at the side and fixed at the end of the Large Wave Flume. This is where they will be exposed to the waves, enabling researchers to track the progress of erosion after each wave cycle.

The project is led by the University of Cambridge (UK), in collaboration with Universität Hamburg (Germany), TU Braunschweig (Germany), University of Antwerp (Belgium), as well as the Royal Netherlands Institute for Sea Research.

The Large Wave Flume at the Coastal Research Centre

The Large Wave Flume at the Coastal Research Centre is a joint research facility of Leibniz University Hannover and TU Braunschweig. Measuring 5 metres in length, 7 metres in depth and comprising a usable length of 307 metres, it is one of the largest wave flumes worldwide. The hydraulic wave generator simulates continuous waves and swells under deep and shallow water conditions. In addition, it generates continuous waves up to two metres high, as well as wave spectrums with significant wave heights of up to 1.3 metres.

Contact persons (contact details for interviews available upon request)

- Dr. Iris Möller, University of Cambridge, Coastal Research Unit
-Dipl.-Ing. Matthias Kudella, Leibniz Universität Hannover, Coastal Research Centre
- Dr. Stefanie Nolte, Universität Hamburg, Applied Plant Ecology
- Dr. Maike Paul, Technische Universität Braunschweig, Institute of Geoecology

Contact:
Maria Latos
Universität Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Communications and Collaborations
Tel.: +49 40 42838-8109
Email: maria.latos@uni-hamburg.de

Photos are available upon request.

Mechtild Freiin v. Münchhausen | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-hannover.de

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>