Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018

International researchers from various universities conduct a unique experiment in the Large Wave Flume

Salt marsh plants such as cordgrass and sea club-rush protect coastal areas in storm surge conditions and provide a buffer for approaching waves. But what happens to the vegetation if storm surges occur more frequently or become more severe in the course of climate change? And how will this impact coastal erosion?


Silt grass in the wave channel

UHH/MIN/Latos


Surveying of plants

UHH/MIN/Latos

An international research team is currently exploring these questions in a unique experiment in the Large Wave Flume at the Coastal Research Centre, a joint facility of Leibniz University Hannover and TU Braunschweig. The research results could illustrate the consequences of climate change for the invaluable role of tidal marsh in providing protection against coastal erosion.

Salt marshes occur on shallow coasts influenced by tides. They provide a habitat for adapted plants and animals, protect the coast, and contribute to climate protection as they store carbon dioxide from the atmosphere. However, if storm surges occur more frequently due to climate change, the system might become imbalanced and lose its protective function for the coast.

To date, researchers can neither predict the resistance of tidal marshes against more frequent or more severe flooding nor what kind of storm surges might destroy them. Salt marshes are considerably more complex than dunes or sand beaches. On the one hand, they contain large quantities of silt and loam, resulting in “sticky” soil. On the other hand, their protective vegetation is more or less pronounced.

Within the framework of the Hydralab+ project RESIST (“Response of Ecologically-mediated Shallow Intertidal Shores and their Transitions to extreme hydrodynamic forcing”), an international team will address these issues by analysing the effects of heavy swells on seedlings and fully-grown plants of different species, as well as the effect of soil composition on coastal erosion. Over a period of three weeks, researchers at the Large Wave Flume in Hannover will expose various salt marsh plants as well as sediment samples to large waves and storm surges.

In March 2018, researchers collected plants such as cordgrass and sea club-rush in the Netherlands. Subsequently, they planted them in wooden boxes, which were then positioned in five different soil zones of the Large Wave Flume.

For instance, in one zone the team will study the effects of storm surges in summer and winter. For this, some plants were drained in order to simulate dieback due to drought. Researchers will use another zone to test new erosion control equipment made from potato starch. The mesh is fixed to the ground inside the boxes and should protect both seedlings and sediment against waves.

A total of 18 sediment drill cores will also be used in the experiment, which the RESIST team extracted from the silty east coast and the sandy west coast of the UK in July. Researchers examined the texture and condition by means of a micro CT scanner in Cambridge. The drill cores will be opened at the side and fixed at the end of the Large Wave Flume. This is where they will be exposed to the waves, enabling researchers to track the progress of erosion after each wave cycle.

The project is led by the University of Cambridge (UK), in collaboration with Universität Hamburg (Germany), TU Braunschweig (Germany), University of Antwerp (Belgium), as well as the Royal Netherlands Institute for Sea Research.

The Large Wave Flume at the Coastal Research Centre

The Large Wave Flume at the Coastal Research Centre is a joint research facility of Leibniz University Hannover and TU Braunschweig. Measuring 5 metres in length, 7 metres in depth and comprising a usable length of 307 metres, it is one of the largest wave flumes worldwide. The hydraulic wave generator simulates continuous waves and swells under deep and shallow water conditions. In addition, it generates continuous waves up to two metres high, as well as wave spectrums with significant wave heights of up to 1.3 metres.

Contact persons (contact details for interviews available upon request)

- Dr. Iris Möller, University of Cambridge, Coastal Research Unit
-Dipl.-Ing. Matthias Kudella, Leibniz Universität Hannover, Coastal Research Centre
- Dr. Stefanie Nolte, Universität Hamburg, Applied Plant Ecology
- Dr. Maike Paul, Technische Universität Braunschweig, Institute of Geoecology

Contact:
Maria Latos
Universität Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Communications and Collaborations
Tel.: +49 40 42838-8109
Email: maria.latos@uni-hamburg.de

Photos are available upon request.

Mechtild Freiin v. Münchhausen | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-hannover.de

More articles from Life Sciences:

nachricht Complex genetic regulation of flowering time
26.05.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Bristol scientists see through glass frogs' translucent camouflage
26.05.2020 | University of Bristol

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

NIST researchers boost microwave signal stability a hundredfold

26.05.2020 | Physics and Astronomy

Complex genetic regulation of flowering time

26.05.2020 | Life Sciences

'One-way' electronic devices enter the mainstream

26.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>