Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CAR T cells generated in vivo

17.09.2018

In August 2018, two CAR T cell therapeutics obtained marketing authorization from the European Commission. They provide efficacious treatment options for patients suffering from certain forms of leukemia and who have not responded to other treatment options. However, manufacturing CAR T cells that are composed of genetically engineered patient immune cells is laborious: the cells are taken from the patient, genetically modified with the CAR, multiplied and then reinfused. Researchers of the Paul-Ehrlich-Institut (PEI) succeeded in animal experiments to engineer CAR-T cells directly in the living organism. EMBO Mol Med reports on the research results in its online issue of 17 September 2018.

Cancer cells often escape the immune system unrecognized. A new form of cancer therapy aims at tackling this by retargeting immune cells against the cancer cells. CAR T cells belong to this cancer immunotherapies.


Schematic representation of CAR T cell generation. On the left, ex vivo CAR T cell generation, on the right, vector particle, which selectively introduces genetic information for the CAR into T cells

Source: EMBO Mol Med

This involves removing certain immune cells (T cells) from the patient, equipping them outside the body with a chimeric (synthetic) antigen receptor (CAR), amplification and retransplantation into the patient. The antigen receptor recognizes distinct surface structures, in case of the authorized products, the CD19 antigen on cancer cells. Being equipped with the chimeric antigen receptor, the immune cells can recognize and kill cancer cells.

This therapy resulted in some patients, who had not profited from standard care, in the complete elimination of cancer cells and their absence over many years. Manufacturing such products is however laborious: The cells have to be harvested from the patient, must be genetically modified outside the body and then reinfused. Moreover, the distinct steps of this process can inadvertently alter the immune cells and their activities.

Researchers led by Prof Christian Buchholz at the Paul-Ehrlich-Institut, head of the research group „Molecular Biotechnology and Gene Therapy“ of the Paul-Ehrlich-Institut, succeeded within a research project funded by the German Cancer Aid together with collaboration partners, in achieving this genetic modification of human T cells directly in vivo, i.e in the living organism.

The key factor for this success were specifically modified lentiviral vector particles transferring the CAR gene selectively into those T cell subtypes being responsible for cancer attack. For their proof-of-principle demonstration, the researchers used mice that had been equipped with human blood cells.

A single intravenous injection of the vector particles was sufficient to generate sufficient numbers of CAR T cells that became detectable in blood and lymphatic organs. These in vivo generated CAR T cells proliferated upon antigen contact and eliminated CD19-positive cells. As observed in clinical applications, some animals experienced cytokine release syndrome and neurotoxicity.

This is the first proof-of-concept demonstration that human cytotoxic T cells can be reprogrammed into CAR T cells and kill target cells. The implications of these results are plentifold: The animal model will facilitate research into the side-effects caused by CAR T cell therapy.

The technology of genetically modifying T cells in vivo will be potentially applied in other fields of immunotherapy. Finally, the results form the basis to transform the CAR T cell therapy from an individualized into an universally applicable therapy. This could impact the economic feasibility of this therapy enormously, but, requires, however, a series of preclinical studies first.


The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Originalpublikation:

Pfeiffer A, Thalheimer FB, Hartmann S, Frank AM, Bender RR, Danisch S, Costa C, Wels WS, Modlich U, Stripecke R, Verhoeyen E, Buchholz CJ (2018): In vivo generation of human CD19-CAR T cells results in B cell depletion and signs of cytokine release syndrome.
EMBO Mol Med Sep 17 [Epub ahead of print].
DOI: 10.15252/emmm.201809158

Weitere Informationen:

http://embomolmed.embopress.org/cgi/doi/10.15252/emmm.201809158 - Fulltext of the Publication
https://www.pei.de/EN/information/journalists-press/press-releases/2018/16-car-t... - this press release on the PEI-Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>