Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonn Researchers Identify Key Proteins for the Repair of Nerve Fibers

08.08.2019

Scientists at the German Center for Neurodegenerative Diseases (DZNE) have identified a group of proteins that help to regenerate damaged nerve cells. Their findings are reported in the journal “Neuron”.

It is commonly accepted that neurons of the central nervous system shut down their ability to grow when they no longer need it; this occurs normally after they have found their target cells and established synapses.


(Dorsal root ganglia) neuron under the microscope.

Sorce: DZNE / Barbara Schaffran

However, recent findings show that old nerve cells have the potential to regrow and to repair damage similar to young neurons. The underlying mechanisms for this rejuvenation have now been uncovered in laboratory studies led by the team of Professor Frank Bradke at the DZNE’s Bonn site together with scientists of the University of Bonn.

“Actually, this is quite surprising. It is by no means a matter of course that young and adult nerve cells share the same mechanisms,” Bradke said. “Neurons show vigorous growth during embryonic development. Mature nerve cells, on the other hand, usually do not grow and fail to regenerate. Our study now reveals that although the ability to grow is inhibited in adult cells, the neurons keep the disposition for growth and regeneration.”

Bradke and coworkers discovered that certain proteins which initiate growth in young neurons are crucial for these processes. “These proteins are key regulators of growth competence, irrespective of developmental stage. They act on the cell’s supporting structure and thus trigger dynamic processes, which are a prerequisite for growth and regeneration,” the neurobiologist said.

Juvenile growth talents

In fact, neurons only show their growth talent during embryonic development. At this stage, they form long projections (called “axons”) in order to connect and thus transmit signals. However, the ability to grow and thus regrow after injury dwindles when the nervous system reaches the adult stage.

Only neurons of the “periphery”, e. g. those in the arms and legs, retain a pronounced potential for mending damaged connections. However, if axons in the spinal cord are severed, they do not regrow: Consequently, the pathway for nerve impulses remains disturbed. This can cause paralysis and other serious disabilities.

A special protein family

“For quite some time, we have been wondering whether it is possible to reactivate the processes which manifest in the early developmental phase. This could be a way to trigger regeneration in adult neurons,” Sebastian Dupraz said, a postdoctoral researcher in Bradke’s lab and a leading author of the current study. In recent years the Bonn scientists identified various factors that influence the growth of neurons.

Certain proteins – those of the “cofilin/ADF” family – proved to play a pivotal role: During embryonic development, these molecules control the formation of cell protuberances that ultimately evolve into axons. “In our recent study, we found that it is precisely these proteins that drive growth and regeneration, also in adult neurons,” Dupraz said.

Molecular dissolution

The scientists found that the growth and regrowth of neurons is fueled by the turnover of actin filaments. These string shaped molecules belong to the molecular scaffold that gives the cell its form and stability. The proteins of the cofilin/ADF family partially dissolve this corset. It is only through this breakup that the structure of the cell can change – and thus the neuron can grow and regenerate. “An approach for future regenerative interventions could be to target actin,” DZNE scientist Barbara Schaffran, another leading author of the current study, mentions.

The researchers observed these processes in the nerve cells of mice and rats. The neurons examined belonged to the “dorsal root ganglion”. This is a bundle of neurons that interfaces the spinal cord with the peripheral nervous system. The cells located there each have two axons: a central and a peripheral. The peripheral axon can regenerate after damage. It has long been known that the central axon can also regrow; but only if its peripheral counterpart has previously been lesioned. “Why the sequence is like this is still not exactly known,” Bradke said. “We will be looking into this in the future.”

Contribution to fundamental research

Step by step, the Bonn scientists are trying to understand what makes neurons grow and regenerate. It is a lengthy process. Bradke is therefore dampening expectations of rapid progress in the treatment of spinal cord injuries. “We do research in order to set the basis for future therapies. But sadly, you have to be patient until new treatment approaches develop. That‘s a long way to go,“ he said.

Originalpublikation:

ADF/Cofilin-Mediated Actin Turnover Promotes Axon Regeneration in the Adult CNS, Andrea Tedeschi, Sebastian Dupraz, Michele Curcio, Claudia J. Laskowski, Barbara Schaffran et al., Neuron (2019), DOI: 10.1016/j.neuron.2019.07.007

Weitere Informationen:

https://www.dzne.de/en/news/public-relations/press-releases/press/detail/bonn-re...

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Preserved and fresh – Neutrons show details of the freeze drying process
27.02.2020 | Technische Universität München

nachricht Detect cell changes faster
27.02.2020 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Preserved and fresh – Neutrons show details of the freeze drying process

27.02.2020 | Life Sciences

Underwater Snail-o-Bot gets kick from light

27.02.2020 | Health and Medicine

Explained: Why water droplets 'bounce off the walls'

27.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>