Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birch Helps Wounds Heals Faster

24.01.2014
Freiburg pharmaceutical researchers elucidate the effect of a natural extract

Extracts from the birch tree have served for centuries as a traditional means of helping the damaged skin around wounds to regenerate more quickly.


Birch bark extract is prepared from the outer white layer of the tree. © Armin Scheffler

Prof. Dr. Irmgard Merfort from the Institute of Pharmaceutical Sciences of the University of Freiburg and her team have now explained the molecular mechanism behind the wound-healing effect of an extract from the outer white layer of the tree’s bark. The scientists published their findings in the journal Plos One.

The team cooperated with several other departments and institutes, such as a research group from the Institute of Molecular Medicine and Cell Research and the Institute of Experimental and Clinical Pharmacology of the University of Freiburg as well as a research group from the Dermatological Clinic of the University of Hamburg.

In the first phase of wound healing, the damaged skin cells release certain substances that lead to a temporary inflammation. They attract phagocytes, which remove foreign bacteria and dead tissue. The Freiburg scientists determined that the birch bark extract, in particular its main ingredient betulin, does in fact temporarily increase the amount of these inflammatory substances. The natural substance activates proteins that extend the half-life of the messenger ribonucleic acid (mRNA). A gene must first be translated into mRNA for the blueprint of a protein to be read by the genome. The substance triples the time in which the mRNA of a particular messenger remains stable. This messenger enables more of the protein in question, in this case the inflammatory substances, to be produced. In addition, the birch bark extract and betulin also stabilize the mRNA of further messengers.

In the second phase of wound healing the skin cells migrate and close the wound. The natural substance aids in this process: The birch cork extract and its components betulin and lupeol activate proteins that are involved in the restructuring of the actin cytoskeleton, which gives the cell its shape with the help of the structural protein actin. In this way, the substances from the birch cause keratinocytes – the most common type of cell in the outermost layer of skin – to migrate more quickly into the wound and close it.

Original Publication:
Ebeling, S./Naumann, K./Pollok, S./Vidal-y-Sy, S./Wardecki, T./Nascimento, J. M./ Boerries, M./Schmidt, G./Brandner, J. M./Merfort, I. (2013): From a traditional medicinal plant to a rational drug: understanding the clinically proven wound healing efficacy of birch bark extract. In: PLOS ONE. DOI: 10.1371/journal.pone.0086147
Article in uni’wissen:
www.pr.uni-freiburg.de/go/wundheilung
Contact:
Prof. Dr. Irmgard Merfort
Institute of Pharmaceutical Sciences
University of Freiburg
Phone: +49 (0)761 / 203-8373
E-Mail: irmgard.merfort@pharmazie.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Further information:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/go/wundheilung

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>