Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's in the Genes: Research Pinpoints How Plants Know When to Flower

30.05.2012
Scientists believe they've pinpointed the last crucial piece of the 80-year-old puzzle of how plants "know" when to flower.

Determining the proper time to flower, important if a plant is to reproduce successfully, involves a sequence of molecular events, a plant's circadian clock and sunlight.

Understanding how flowering works in the simple plant used in this study – Arabidopsis – should lead to a better understanding of how the same genes work in more complex plants grown as crops such as rice, wheat and barley, according to Takato Imaizumi, a University of Washington assistant professor of biology and corresponding author of a paper in the May 25 issue of the journal Science.

"If we can regulate the timing of flowering, we might be able to increase crop yield by accelerating or delaying this. Knowing the mechanism gives us the tools to manipulate this," Imaizumi said. Along with food crops, the work might also lead to higher yields of plants grown for biofuels.

At specific times of year, flowering plants produce a protein known as FLOWERING LOCUS T in their leaves that induces flowering. Once this protein is made, it travels from the leaves to the shoot apex, a part of the plant where cells are undifferentiated, meaning they can either become leaves or flowers. At the shoot apex, this protein starts the molecular changes that send cells on the path to becoming flowers.

Changes in day length tell many organisms that the seasons are changing. It has long been known that plants use an internal time-keeping mechanism known as the circadian clock to measure changes in day length. Circadian clocks synchronize biological processes during 24-hour periods in people, animals, insects, plants and other organisms.

Imaizumi and the paper's co-authors investigated what's called the FKF1 protein, which they suspected was a key player in the mechanism by which plants recognize seasonal change and know when to flower. FKF1 protein is a photoreceptor, meaning it is activated by sunlight.

"The FKF1 photoreceptor protein we've been working on is expressed in the late afternoon every day, and is very tightly regulated by the plant's circadian clock," Imaizumi said. "When this protein is expressed during days that are short, this protein cannot be activated, as there is no daylight in the late afternoon. When this protein is expressed during a longer day, this photoreceptor makes use of the light and activates the flowering mechanisms involving FLOWERING LOCUS T. The circadian clock regulates the timing of the specific photoreceptor for flowering. That is how plants sense differences in day length."

This system keeps plants from flowering when it's a poor time to reproduce, such as the dead of winter when days are short and nights are long.

The new findings come from work with the plant Arabidopsis, a small plant in the mustard family that's often used in genetic research. They validate predictions from a mathematical model of the mechanism that causes Arabidopsis to flower that was developed by Andrew Millar, a University of Edinburgh professor of biology and co-author of the paper.

"Our mathematical model helped us to understand the operating principles of the plants' day-length sensor," Millar said. "Those principles will hold true in other plants, like rice, where the crop's day-length response is one of the factors that limits where farmers can obtain good harvests. It's that same day-length response that needs controlled lighting for laying chickens and fish farms, so it's just as important to understand this response in animals.

"The proteins involved in animals are not yet so well understood as they are in plants but we expect the same principles that we've learned from these studies to apply."

First author on the paper is Young Hun Song, a postdoctoral researcher in Imaizumi's UW lab. The other co-authors are Benjamin To, who was a UW undergraduate student when this work was being conducted, and Robert Smith, a University of Edinburgh graduate student. The work was funded by the National Institutes of Health, and the United Kingdom's Biotechnology and Biological Sciences Research Council.

For more information:
Imaizumi, 206-543-8709, takato@uw.edu

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria
18.02.2020 | Heinrich-Heine-Universität Düsseldorf

nachricht Blood and sweat: Wearable medical sensors will get major sensitivity boost
18.02.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>