Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planetary tilt not a spoiler for habitation

26.08.2003


In B science fiction movies, a terrible force often pushes the Earth off its axis and spells disaster for all life on Earth. In reality, life would still be possible on Earth and any Earth-like planets if the axis tilt were greater than it is now, according to Penn State researchers.



"We do not currently have observations of extrasolar planets, but I imagine that in the near future, we will uncover some of these small planets," says Dr. Darren M. Williams, assistant professor of physics and astronomy, Penn State Erie, the Behrend College. "The issue before us is what will they be like? Will they have moons? What will their climates be like? Will they be teaming with life or will life be rare?

"I suspect, based on simulations and our own solar system, that many Earth-like planets will have spin axes that are tipped more severely than Earth’s axis."


Williams, working with David Pollard, research associate in geoscience at Penn State, used general circulation climate models to simulate a variety of tilts, carbon dioxide levels and planets. They reported on their findings in the International Journal of Astrobiology.

The researchers first looked at present-day Earth with tilts of 23, 54, 70 and 85 degrees. Earth’s tilt today is about 23 degrees. The simulation that mimicked today’s Earth and tilt closely matched today’s climate, including regional precipitation patterns, snow and ice cover and drought.

"Tilts greater than the present produce global annual-mean temperatures higher than Earth’s present mean temperature of about 57 degrees Fahrenheit," says Williams. "Above 54 degrees of tilt, the trend is for the global annual-mean temperature to decrease as tilt increases."

The Penn State scientist explains that this decrease occurs because more land exists north of the equator in present-day Earth. Annual-mean temperatures, however, are not the best way to determine if a planet might be habitable, as seasonal temperature variations could be extreme.

The researchers also looked at these tilted Earths with ten times the carbon dioxide in the atmosphere. Carbon dioxide as a greenhouse gas increases the temperatures on a planet. These models produced Earths with 11 to 18 degrees Fahrenheit higher annual-mean temperatures.

Because all planets will not have Earth’s geography, the researchers took a page from Earth’s history and modeled a 750-million-year-old Earth representing the Sturtian glaciation and a 540-million-year-old Earth, the closest approximation available for the Varanger glaciation.

"During the Sturtian, land masses were mainly equatorial and clumped mostly within 30 degrees of the equator," says the Penn State Erie researcher. "In the Varanger model, everything is close to the south pole."

While current day Earth is about 30 percent land to 70 percent water, these ancient geographies are about 22 percent land and 78 percent water.

"The highest temperatures and seasonal variations happen with the largest land areas at the mid to high latitudes," says Williams. The researchers also ran some of the model Earths with zero tilt.

"Present Earth is one of the most uninhabitable planets that we have simulated," says Williams. "Approximately 8.7 percent of the Earth’s surface is colder than 14 degrees Fahrenheit on average, and this percentage peaks at 13.2 percent in February owing to the large landmasses at high latitude covered by snow."

The only planets colder than today’s Earth are those planets simulated with no tilt.

The Varanger simulation, with most land in the southern hemisphere, is the most extreme with 15.6 percent of the surface below 14 degrees Fahrenheit in July and 9.3 percent of the surface above 122 degrees Fahrenheit in January. On average, nearly 28 percent of this planet’s land mass is uninhabitable by Earth standards.

"This simulation suggests that planets with either large polar supercontinents or small inventories of water will be the most problematic for life at high obliquity," says Williams.

None of the planets with increased tilt had permanent ice sheets near the equator. This, however, does not guarantee that a world is suitable for life, the researchers note. The extremes of temperature on most of the simulated earths would make it difficult for all but the simplest Earth life forms to survive. Extremes caused because the tilt puts large portions of the planet in 24-hour darkness or 24-hour sunlight for long periods would also inhibit photosynthetic organisms.

The researchers suggest that even with high tilt, life can exist on the planets they modeled.

"Provided the life does not occupy continental surfaces plagued seasonally by the highest temperature, these planets could support more advanced life," the researchers say. "While such worlds exhibit climates that are very different from Earth’s, many will still be suitable for both simple and advanced forms of water-dependent life."

So there is no reason to eliminate Earth-like planets with more tilt than Earth from future searches for life beyond the solar system. "We have one planet and we have a lot of species on this planet, but it is only one data point," says Williams. "Maybe one day we will figure out everything about life on our own planet, but no where near what is possible elsewhere."



The National Science Foundation supported this work.

The International Journal of Astrobiology, founded in 2002, is published by Cambridge University Press. The editors are Dr. Simonj Mitton (Cambridge) smitton@cambridge.org and Dr. Lynn Rothschild (NASA-Ames) Irothschild@mail.arc.nasa.gov.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Interdisciplinary Research:

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

nachricht Stanford researchers create a wireless, battery-free, biodegradable blood flow sensor
09.01.2019 | Stanford University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>