Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Scientists Develop Novel Way to Screen Molecules Using Conventional CDs and Compact Disk Players

19.08.2003


Graphic showing how molecules attached to CDs in new technique can screen for proteins

Chemists at the University of California, San Diego have developed a novel method of detecting molecules with a conventional compact disk player that provides scientists with an inexpensive way to screen for molecular interactions and a potentially cheaper alternative to medical diagnostic tests.

A paper detailing their development will appear this week in an advance on-line edition of the Journal of Organic and Biomolecular Chemistry and in the printed journal’s September 21st issue.

“Our immediate goal is to use this new technology to solve basic scientific questions in the laboratory,” says Michael Burkart, an assistant professor of chemistry and biochemistry at UCSD and a coauthor of the paper. “But our eventual hope is that there will be many other applications. Our intention is to make this new development as widely available as possible and to see where others take the technology.”

Burkart and James La Clair, a visiting scholar in Burkart’s laboratory who initially developed and patented the technique, said that since scientific laboratories often rely on laser light to detect molecules, it made sense to them to design a way to detect molecules using the most ubiquitous laser on the planet--the CD player.

“The CD is by far the most common media format in our society on which to store and read information,” says La Clair. “It’s portable, you can drop it on the floor and it doesn’t break. It’s easy to mass produce. And it’s inexpensive.”

Their technique takes advantage of the tendency for anything adhering to the CD surface to interfere with a laser’s ability to read digital data burned onto the CD.

“We developed a method to identify biological interactions using traditional compact disk technology,” explains La Clair, who provided the patent rights to the method to UCSD. “Using inkjet printing to attach molecules to the surface of a CD, we identified proteins adhering to these molecules by their interaction with the laser light when read by a CD player.”

While usually anything, like a scratch on the CD surface, that would interfere with the detection of the bits of information encoded on a CD would be a drawback, the UCSD researchers actually exploited this error to detect molecules.

“That’s the novelty of this,” Burkart points out. “We are actually using the error to get our effect.”

The typical CD consists of a layer of metal sandwiched between a layer of plastic and a protective lacquer coating. When a CD is burned, a laser creates pits in the metal layer. A CD player uses a laser to translate the series of pits and intervening smooth surface into the corresponding zeros and ones that make up the bits of digital information.

To do molecular screening, the researchers took a CD encoded with digital data, and enhanced the chemical reactivity of the plastic on the readable surface. They then added molecules they wanted to attach to this surface to the empty ink wells of an inkjet printer cartridge and used the printer to “print” the molecules onto the CD. This resulted in a CD with molecules bound to its readable surface in specific locations relative to the pits in the metal layer of the CD encoding the digital information. When the CD with these molecules attached is placed in a CD player, the laser detects a small error in the digital code relative to what is read from the CD without the molecules attached.

To detect proteins or other large molecules in a solution like a blood sample, the modified CD is allowed to react with the sample solution. Like a key that only fits in a certain lock, some proteins bind to specific target molecules. Thus, specific molecules on the surface of a CD can be used to “go fishing” for certain proteins in a sample. The attachment of these proteins will introduce further errors into the reading of the CD. Furthermore, since the molecules on the surface of the CD are at known locations relative to the bits of encoded information, the errors tell the researchers what molecules have attached to their target protein and, thus, whether or not that protein is present in the sample.

“James has even done this using CDs with music, like Beethoven’s Fifth Symphony,” says Burkart. “And you can actually hear the errors.”

“How many people on this planet can actually hear a molecule attached to another molecule?” asks La Clair.

While a few bugs need to be ironed out before the technique can be used to accurately quantify the amount of a given protein in solution, Burkart plans to apply it immediately to help him screen for new compounds in his natural products chemistry research laboratory. Compared to the $100,000 price tag for a fluorescent protein chip reader, he points out, a CD player costs as little as $25.

The researchers envision many other potential applications for this technology outside the laboratory, particularly in the development of inexpensive medical diagnostic tests, now beyond the means of many people around the world, particularly in developing countries.

“In theory, anyone who has a computer with a CD drive could do medical tests in their own home,” says La Clair.

The researchers hope that by openly publishing their development in the scientific literature, others will customize the technology in a variety of ways, eventually leading to a wide range of inexpensive new diagnostic kits and other beneficial

products.

“We plan to make this fully available and see what people come up with,” says Burkart.

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/CDdetector.htm
http://discode.ucsd.edu/
http://www.rsc.org/Publishing/Journals/cs/index.asp

More articles from Interdisciplinary Research:

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

nachricht Stanford researchers create a wireless, battery-free, biodegradable blood flow sensor
09.01.2019 | Stanford University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>