Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Guide vests' -- robotic navigation aids for the visually impaired

26.05.2011
USC engineers are creating a high-tech aid for blind and partially blind people who have long depended on white canes as their only tool for getting around

For the visually impaired, navigating city streets or neighborhoods has constant challenges. And most such people still must rely on a very rudimentary technology—a simple cane—to help them make their way through a complex world.

A group of University of Southern California engineering researchers is working to change that by developing a robot vision-based mobility aid for the visually impaired. A design first shown a year ago is now being further developed.

The need is clear. According to the World Health Organization, 39 million people worldwide are totally blind and a much larger number, 284 million people, are visually impaired. In the United States, according to the American Foundation for the Blind, 109,000 visually impaired people use long white canes to get around. Guide dogs? About 7,000 nationwide.

"There are many limitations to canes for the visually impaired, from low hanging branches to large objects," according to Gérard Medioni, a professor in the Institute for Robotics and Intelligent Systems at USC Viterbi. "We wanted to build an effective system that would provide new opportunities for the visually impaired."

Medioni and his colleagues, including James Weiland, a Viterbi School associate professor of biomedical engineering who is also a professor of ophthalmology at the USC Keck School of Medicine's Doheny Eye Institute; and Vivek Pradeep, a recent Viterbi Ph.D who is now at the Applied Sciences Group of Microsoft, have developed software that "sees" the world, and linked it to a system that provides tactile messages to alert users about objects in their paths. Pradeep won the 2010 USC Department of Biomedial Engineering Grodins Graduate Research Award and a USC Stevens Institute 'most inventive' award for his work on the system.

The system uses cameras worn on the head connected to PCs that use Simultaneous Localization and Mapping (SLAM) software to build maps of the environment and identify a safe path through obstacles. This route information is conveyed to the user through a guide vest that includes four micro motors located on an individual's shoulder and waist that vibrate like cell phones.

For example, a vibration on the left shoulder indicates a higher object to the left, such as a low-hanging branch, and the individual can in turn use that information to take a new path. Medioni said that canes have clear limitations with larger objects, from walls to concrete structures, and the technology will enable users to avoid falls and injuries.

The USC team tested the system on blind subjects at the Braille Institute. The users there "like the system, and they feel it really helps them," Medioni said. "We greatly appreciate the cooperation and help of the Institute and the test subjects," added Weiland.

Medioni is pleased with the prototype of the system presented at the 2010 International IEEE Engineering in Medicine and Biology Society (EMBS) Conference, and more recently, May 1 at the 2011 meeting of Association for Research in Vision and Opthalmology. But he and the team are now working to improve it. The current head-mounted camera is bulky, and the team is now working on a micro-camera system that could be attached to glasses. The goal is to have a new system in place by the end of 2011, he said.

The National Science Foundation and the U.S. Army funded the research, which will be used to help veterans who have been blinded during their service in the military, along with the W.M. Keck Foundation

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu

More articles from Interdisciplinary Research:

nachricht A Dream for the Future: “Flying with Green Fuel"
25.07.2018 | Universität Bremen

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>