Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanolane revolutionises conventional microscopes with Sarfus Mapping Lite

21.02.2012
Nanolane of France, a specialist in the development and commercialisation of optical solutions for characterising nanomaterial systems, has launched Sarfus Mapping Lite — an innovative measurement solution that fits with any optical microscope set-up functioning with reflected light.

French-based Nanolane has recently created easy-to-use Sarfus Mapping Lite, a plug-in piece of apparatus, the main components of which are a set of Surf microscope slides, step-height standards and a powerful piece of software. Sarfus Mapping Lite fits with all optical microscopes that use reflected light. Thanks to the technology developed by Nanolane, what has remained invisible to an optical microscope for so long is now revealed clearly.

Surf slides replace ordinary microscope glass slides and are where users deposit samples. The users then handle the optical microscope as usual, apart from the fact that the contrast enhancement brought about by Surf is such that they can see nano-objects in the shape of films, tubes or particles directly through eyepieces, i.e. with the naked eye.

The data conversion software included in the Sarfus Mapping Lite package takes a Charged Coupled Device (CCD) camera-obtained 2D colour image and provides a 3D thickness map of a nanometric sample. To do so, the optical instrument, i.e. the combination of the optical microscope and colour camera, is calibrated. This calibration occurs thanks to a series of nanometric step-height standards that are traceable to the ISO 17025 standard. These standards mean that a detection limit, which can be as high as 0.1nm (instrument dependent), is guaranteed.

Up until now, Surf-slide users were able to sense and image nanometric objects, such as nanotubes, nanowires, DNA strands, and nanoparticles. With Sarfus Mapping Lite, they will also be able to measure thin films and surface treatment of items with nanometric thickness.

The benefits one gains from adding Sarfus Mapping Lite to a microscope, as compared to the current nanocharacterisation or imaging tools, are, above all, related to its excellent accessibility and user friendliness.

Real-time image acquisition makes it possible to record fast dynamic phenomena, depending on the camera's capacities. A selectable field of view, ranging from a few µm² to several mm², depending on magnification, gives users the flexibility to study their samples globally. This global studying is useful for locating regions of interest (ROIs). The selectable field of view also allows samples to be studied locally, so as to investigate micro- to sub-micro-details. Additionally, the viewing technique is non-contact in nature and, therefore, truly non-destructive.

Applications of Sarfus Mapping Lite are many, from thin-film characterisation (for organics, inorganics, liquid crystals and lithography) to biological systems (such as biochips and biofilms), among many others. More fundamental research-related applications include nanopatterns, Langmuir-Blodgett films, and self-assembled monolayers(SAMs), for example.

About Nanolane

Nanolane, the nanotechnologies department of Eolane of France, develops and sells scientific instruments and scientific-related consumables in the field of nanotechnology.

Eolane is an electronic manufacturing services (EMS) business whose 2,400 members of staff, working for its many subsidiaries, generate an annual turnover of about €300 million. Eolane operates in a range of complementary fields encompassing technology and industry.

Nanolane's Sarfus Mapping Lite is a package that includes a number of items, with, in particular, a set of Surf slides, some step-height standards, and a powerful piece of software. It fits with all optical microscopes that use reflected light, allowing what has remained invisible to an optical microscope for so long to be clearly revealed.

For further information about Eolane, please go to: www.eolane.com

For further information about Surfs, please go to: www.nano-microscopy.com

For further information about Nanolane, please go to: www.nano-lane.com

For further information, please contact :

Quote ref. : FTPB3696
Ms Katherine WOODS - Press Officer
UBIFRANCE Press Office in London
Tel: +44 (0) 207 024 3640
katherine.woods@ubifrance.fr

Katherine Woods | UBIFRANCE
Further information:
http://www.ubifrance.com/uk/

More articles from Innovative Products:

nachricht Designing a puncture-free tire
30.01.2020 | University of Illinois College of Engineering

nachricht A rail system allows child seat to be simply attached to the wheelchair
06.11.2019 | Technische Universität Kaiserslautern

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>